RUS  ENG
Full version
PEOPLE

Trofimov Vladimir Ivanovich

Publications in Math-Net.Ru

  1. Infinite locally finite connected graphs with countable complements in $\mathbb{C}$ of the sets of eigenvalues

    Trudy Inst. Mat. i Mekh. UrO RAN, 31:1 (2025),  228–235
  2. On adjacency operators of locally finite graphs

    Izv. RAN. Ser. Mat., 88:3 (2024),  139–191
  3. A Graph with a Locally Projective Vertex-Transitive Group of Automorphisms Aut($Fi_{22}$) Which Has a Nontrivial Stabilizer of a Ball of Radius $2$

    Trudy Inst. Mat. i Mekh. UrO RAN, 29:4 (2023),  274–278
  4. On the Weiss Conjecture. I

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:1 (2022),  247–256
  5. On Limits of Vertex-Symmetric Graphs and Their Automorphisms

    Trudy Inst. Mat. i Mekh. UrO RAN, 25:4 (2019),  226–234
  6. Stabilizers of vertices of graphs with primitive automorphism groups and a strong version of the Sims conjecture. IV

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:3 (2018),  109–132
  7. Big subsets with small boundaries in a graph with a vertex-transitive group of automorphisms

    Izv. RAN. Ser. Mat., 81:1 (2017),  139–160
  8. Stabilizers of vertices of graphs with primitive automorphism groups and a strong version of the Sims conjecture. III

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:4 (2016),  163–172
  9. Stabilizers of vertices of graphs with primitive automorphism groups and a strong version of the Sims conjecture. II

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:2 (2016),  177–187
  10. The finiteness of the number of symmetrical extensions of a locally finite tree by a finite graph

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:3 (2015),  303–308
  11. Symmetrical extensions of graphs

    Izv. RAN. Ser. Mat., 78:4 (2014),  175–206
  12. Stabilizers of vertices of graphs with primitive automorphism groups and a strong version of the Sims conjecture. I

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:4 (2014),  143–152
  13. Some remarks on symmetrical extensions of graphs

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:2 (2014),  284–293
  14. The finiteness of the number of symmetrical 2-extensions of the $d$-dimensional lattice and similar graphs

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:3 (2013),  290–303
  15. A note on the extendability of an isomorphism of subgraphs of a graph to an automorphism of the graph

    Trudy Inst. Mat. i Mekh. UrO RAN, 18:3 (2012),  26–29
  16. Some topics in graph theory related with group theory

    Sib. Èlektron. Mat. Izv., 8 (2011),  62–67
  17. Symmetrical extensions of graphs and some other topics in graph theory related with group theory

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:4 (2011),  316–320
  18. On symmetrical $4$-extensions of the grid $\Lambda^2$

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:3 (2011),  242–257
  19. On symmetrical $q$-extensions of the 2-dimensional grid

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:3 (2010),  199–209
  20. On the Fastest Moving Off from a Vertex in Directed Regular Graphs

    Mat. Zametki, 82:5 (2007),  770–782
  21. Graphs with projective suborbits. Exceptional cases of characteristic 2. IV

    Izv. RAN. Ser. Mat., 67:6 (2003),  193–222
  22. Graphs with projective suborbits. Exceptional cases of characteristic 2. III

    Izv. RAN. Ser. Mat., 65:4 (2001),  151–190
  23. On a Property of Urysohn's Universal Metric Space

    Mat. Zametki, 69:2 (2001),  319–320
  24. Graphs with projective suborbits. Exceptional cases of characteristic 2. II

    Izv. RAN. Ser. Mat., 64:1 (2000),  175–196
  25. Graphs with projective suborbits. Exceptional cases of characteristic 2. I

    Izv. RAN. Ser. Mat., 62:6 (1998),  159–222
  26. Graphs with projective suborbits. Cases of small characteristics. II

    Izv. RAN. Ser. Mat., 58:6 (1994),  137–156
  27. Graphs with projective suborbits. Cases of small characteristics. I

    Izv. RAN. Ser. Mat., 58:5 (1994),  124–171
  28. Graphs with projective suborbits

    Izv. Akad. Nauk SSSR Ser. Mat., 55:4 (1991),  890–916
  29. Vertex stabilizers of graphs with projective suborbits

    Dokl. Akad. Nauk SSSR, 315:3 (1990),  544–546
  30. On the action of primitive groups

    Algebra Logika, 28:3 (1989),  337–363
  31. Certain asymptotic characteristics of groups

    Mat. Zametki, 46:6 (1989),  85–93
  32. The effect of the structure of a graph on the behavior of its automorphisms

    Algebra Logika, 27:2 (1988),  221–241
  33. Asymptotic behavior of automorphisms of graphs

    Mat. Sb. (N.S.), 134(176):2(10) (1987),  274–284
  34. The action of a group on a graph

    Izv. Akad. Nauk SSSR Ser. Mat., 50:5 (1986),  1077–1096
  35. Automorphism groups of graphs as topological groups

    Mat. Zametki, 38:3 (1985),  378–385
  36. Growth functions of permutation groups

    Trudy Inst. Mat. Sib. Otd. AN SSSR, 4 (1984),  118–138
  37. Graphs with polynomial growth

    Mat. Sb. (N.S.), 123(165):3 (1984),  407–421
  38. Automorphisms of graphs and a characterization of lattices

    Izv. Akad. Nauk SSSR Ser. Mat., 47:2 (1983),  407–420
  39. Transitive permutation groups with a solvable one-point stabilizer

    Mat. Zametki, 32:3 (1982),  277–284

  40. Letter to the editor

    Izv. RAN. Ser. Mat., 59:4 (1995),  221


© Steklov Math. Inst. of RAS, 2026