RUS  ENG
Full version
PEOPLE

Shevaldin Valerii Trifonovich

Publications in Math-Net.Ru

  1. On the relationship between the second divided difference and the second derivative in the problem of extremal interpolation in the mean

    Chebyshevskii Sb., 26:1 (2025),  131–141
  2. The Golomb–de Bohr problem of extremal interpolation in the mean with the least value of the norm of the second derivative in $L^1(\mathbb R)$

    Mat. Zametki, 118:6 (2025),  943–950
  3. The Jackson–Stechkin Inequality in the Space $C$ with Nonclassic Modulus of Continuity

    Mat. Zametki, 118:2 (2025),  325–329
  4. Sufficient conditions for the existence of the solution of an infinite-difference equation with variable coefficients

    Chebyshevskii Sb., 25:2 (2024),  243–250
  5. Yu. N. Subbotin's Method in the Problem of Extremal Interpolation in the Mean in the Space $L_p(\mathbb R)$ with Overlapping Averaging Intervals

    Mat. Zametki, 115:6 (2024),  919–934
  6. Extremal Interpolation in the Mean in the Space $L_1(\mathbb R)$ with Overlapping Averaging Intervals

    Mat. Zametki, 115:1 (2024),  123–136
  7. Local Extremal Interpolation on the Semiaxis with the Least Value of the Norm for a Linear Differential Operator

    Mat. Zametki, 113:3 (2023),  453–460
  8. Extremal interpolation in the mean with overlapping averaging intervals and the smallest norm of a linear differential operator

    Trudy Inst. Mat. i Mekh. UrO RAN, 29:1 (2023),  219–232
  9. On Favard local parabolic interpolating splines with additional knots

    Zh. Vychisl. Mat. Mat. Fiz., 63:6 (2023),  979–986
  10. Extremal interpolation with the least value of the norm of the second derivative in $L_p(\mathbb R)$

    Izv. RAN. Ser. Mat., 86:1 (2022),  219–236
  11. Extremal functional $L_p$-interpolation on an arbitrary mesh on the real axis

    Mat. Sb., 213:4 (2022),  123–144
  12. On Yu. N. Subbotin's Circle of Ideas in the Problem of Local Extremal Interpolation on the Semiaxis

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:4 (2022),  237–249
  13. Subbotin's splines in the problem of extremal interpolation in the space $L_p$ for second-order linear differential operators

    Trudy Inst. Mat. i Mekh. UrO RAN, 27:4 (2021),  255–262
  14. Local approximation by parabolic splines in the mean with large averaging intervals

    Mat. Zametki, 108:5 (2020),  771–781
  15. Extremal interpolation on the semiaxis with the smallest norm of the third derivative

    Trudy Inst. Mat. i Mekh. UrO RAN, 26:4 (2020),  210–223
  16. On the connection between the second divided difference and the second derivative

    Trudy Inst. Mat. i Mekh. UrO RAN, 26:2 (2020),  216–224
  17. Algorithms for the construction of third-order local exponential splines with equidistant knots

    Trudy Inst. Mat. i Mekh. UrO RAN, 25:3 (2019),  279–287
  18. A Method for the Construction of Local Parabolic Splines with Additional Knots

    Trudy Inst. Mat. i Mekh. UrO RAN, 25:2 (2019),  205–219
  19. Extremal functional interpolation and splines

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:3 (2018),  200–225
  20. On integral Lebesgue constants of local splines with uniform knots

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:2 (2018),  290–297
  21. The Lebesgue constant of local cubic splines with equally-spaced knots

    Sib. Zh. Vychisl. Mat., 20:4 (2017),  445–451
  22. Uniform Lebesgue constants of local spline approximation

    Trudy Inst. Mat. i Mekh. UrO RAN, 23:3 (2017),  292–299
  23. Calibration relations for analogues of the basis splines with uniform nodes

    Ural Math. J., 3:1 (2017),  76–80
  24. A method for the construction of analogs of wavelets by means of trigonometric $B$-splines

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:4 (2016),  320–327
  25. On uniform Lebesgue constants of third-order local trigonometric splines

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:2 (2016),  245–254
  26. Upper bounds for uniform Lebesgue constants of interpolational periodic sourcewise representable splines

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:4 (2015),  309–315
  27. On uniform Lebesgue constants of local exponential splines with equidistant knots

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:4 (2015),  261–272
  28. Two-scale relations for $B$-$\mathcal L$-splines with uniform knots

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:4 (2015),  234–243
  29. On Lebesgue constants of local parabolic splines

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:1 (2015),  213–219
  30. Local exponential splines with arbitrary knots

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:1 (2014),  258–263
  31. Shape preserving conditions for quadratic spline interpolation in the sense of Subbotin and Marsden

    Trudy Inst. Mat. i Mekh. UrO RAN, 18:4 (2012),  145–152
  32. Orders of approximation by local exponential splines

    Trudy Inst. Mat. i Mekh. UrO RAN, 18:4 (2012),  135–144
  33. Local approximation by splines with displacement of nodes

    Mat. Tr., 14:2 (2011),  73–82
  34. Two-scale relations for analogs of basis splines of small degrees

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:3 (2011),  319–323
  35. Form preservation under approximation by local exponential splines of an arbitrary order

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:3 (2011),  291–299
  36. Shape-Preserving Interpolation by Cubic Splines

    Mat. Zametki, 88:6 (2010),  836–844
  37. Approximation by local $\mathcal L$-splines that are exact on subspaces of the kernel of a differential operator

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:4 (2010),  272–280
  38. Approximation by third-order local $\mathcal L$-splines with uniform nodes

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:4 (2010),  156–165
  39. Approximation by local $L$-splines corresponding to a linear differential operator of the second order

    Trudy Inst. Mat. i Mekh. UrO RAN, 12:2 (2006),  195–213
  40. Approximation by local trigonometric splines

    Mat. Zametki, 77:3 (2005),  354–363
  41. Approximation by local parabolic splines with arbitrary knots

    Sib. Zh. Vychisl. Mat., 8:1 (2005),  77–88
  42. The Jackson–Stechkin inequality in the space $C(\mathbb T)$ with trigonometric continuity modulus annihilating the first harmonics

    Trudy Inst. Mat. i Mekh. UrO RAN, 7:1 (2001),  231–237
  43. A problem of extremal interpolation for multivariate functions

    Trudy Inst. Mat. i Mekh. UrO RAN, 7:1 (2001),  144–159
  44. The Jackson–Stechkin inequality in $L^2$ with a trigonometric modulus of continuity

    Mat. Zametki, 65:6 (1999),  928–932
  45. Extremal interpolation in the mean with overlapping averaging intervals and $L$-splines

    Izv. RAN. Ser. Mat., 62:4 (1998),  201–224
  46. Lower estimates of the widths of the classes of functions defined by a modulus of continuity

    Izv. RAN. Ser. Mat., 58:5 (1994),  172–188
  47. Interpolating periodic splines and widths of classes of functions with a bounded noninteger derivative

    Dokl. Akad. Nauk, 328:3 (1993),  296–298
  48. Lower bounds for the widths of classes of periodic functions with a bounded fractional derivative

    Mat. Zametki, 53:2 (1993),  145–151
  49. Widths of classes of convolutions with Poisson kernel

    Mat. Zametki, 51:6 (1992),  126–136
  50. Lower estimations of widths some classes of periodic functions

    Trudy Mat. Inst. Steklov., 198 (1992),  242–267
  51. Lower bounds on widths of classes of sourcewise representable functions

    Trudy Mat. Inst. Steklov., 189 (1989),  185–200
  52. $\mathscr L$-Splines and widths

    Mat. Zametki, 33:5 (1983),  735–744
  53. Some problems of extremal interpolation in the mean for linear differential operators

    Trudy Mat. Inst. Steklov., 164 (1983),  203–240
  54. Some problems of extremal interpolation in the mean

    Dokl. Akad. Nauk SSSR, 267:4 (1982),  803–805
  55. A problem of extremal interpolation

    Mat. Zametki, 29:4 (1981),  603–622
  56. Extremal interpolation with least norm of linear differential operator

    Mat. Zametki, 27:5 (1980),  721–740

  57. Evgeny Georgievich Pytkeev

    Trudy Inst. Mat. i Mekh. UrO RAN, 31:1 (2025),  9–18
  58. Yurii Nikolaevich Subbotin (A Tribute to His Memory)

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:4 (2022),  9–16
  59. Yurii Nikolaevich Subbotin (on his 70th birthday)

    Uspekhi Mat. Nauk, 62:2(374) (2007),  187–190


© Steklov Math. Inst. of RAS, 2026