RUS  ENG
Full version
PEOPLE

Paduchikh Dmitrii Viktorovich

Publications in Math-Net.Ru

  1. Enumeration of intersection arrays of $AT4$-graphs with $q\le 4$

    Trudy Inst. Mat. i Mekh. UrO RAN, 30:4 (2024),  207–211
  2. Inverse Problems in the Class of Distance-Regular Graphs of Diameter $4$

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:1 (2022),  199–208
  3. Inverse problems of graph theory: graphs without triangles

    Sib. Èlektron. Mat. Izv., 18:1 (2021),  27–42
  4. On distance-regular graphs with intersection arrays $\{q^2-1,q(q-2),q+2;1,q,(q+1)(q-2)\}$

    Trudy Inst. Mat. i Mekh. UrO RAN, 27:1 (2021),  146–156
  5. The largest Moore graph and a distance-regular graph with intersection array $\{55,54,2;1,1,54\}$

    Algebra Logika, 59:4 (2020),  471–479
  6. Edge-symmetric distance-regular coverings of complete graphs: the almost simple case

    Algebra Logika, 57:2 (2018),  214–231
  7. Inverse problems in distance-regular graphs theory

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:3 (2018),  133–144
  8. Automorphisms of a distance-regular graph with intersection array {176, 135, 32, 1; 1, 16, 135, 176}

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:2 (2018),  173–184
  9. Vertex-transitive semi-triangular graphs with $\mu=7$

    Sib. Èlektron. Mat. Izv., 14 (2017),  1198–1206
  10. Automorphisms of strongly regular graphs with parameters $(1305,440,115,165)$

    Trudy Inst. Mat. i Mekh. UrO RAN, 23:4 (2017),  232–242
  11. Automorphisms of distance-regular graph with intersection array $\{117,80,18,1;1,18,80,117\}$

    Sib. Èlektron. Mat. Izv., 13 (2016),  972–986
  12. Automorphisms of graph with intersection array $\{115,96,16;1,8,92\}$

    Tr. Inst. Mat., 24:2 (2016),  91–97
  13. Graphs in which local subgraphs are strongly regular with second eigenvalue 5

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:4 (2016),  188–200
  14. Small $AT4$-graphs and strongly regular subgraphs corresponding to them

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:1 (2016),  220–230
  15. On automorphisms of a distance-regular graph with intersection array $\{204,175,48,1;1,12,175,204\}$

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:1 (2016),  212–219
  16. On extensions of strongly regular graphs with eigenvalue 4

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:3 (2015),  233–255
  17. On extensions of exceptional strongly regular graphs with eigenvalue 3

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:1 (2014),  169–184
  18. Edge-symmetric distance-regular coverings of cliques: The affine case

    Sibirsk. Mat. Zh., 54:6 (2013),  1353–1367
  19. Exceptional strongly regular graphs with eigenvalue 3

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:4 (2013),  167–174
  20. On strongly regular graphs with eigenvalue $\mu$ and their extensions

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:3 (2013),  207–214
  21. Arc-transitive distance-regular coverings of cliques with $\lambda=\mu$

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:2 (2013),  237–246
  22. An automorphism group of a distance-regular graph with intersection array $\{24,21,3;1,3,18\}$

    Algebra Logika, 51:4 (2012),  476–495
  23. Graphs in which neighborhoods of vertices are isomorphic to the Mathieu graph

    Trudy Inst. Mat. i Mekh. UrO RAN, 18:3 (2012),  155–163
  24. On graphs in which neighborhoods of vertices are isomorphic to the Higman–Sims graph

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:4 (2011),  189–198
  25. On strongly regular graphs with eigenvalue 2 and their extensions

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:3 (2010),  105–116
  26. Distance-regular graphs in which neighborhoods of vertices are isomorphic to the Gewirtz graph

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:2 (2010),  35–47
  27. On the automorphisms of the strongly regular graph with parameters $(85, 14, 3, 2)$

    Diskr. Mat., 21:1 (2009),  78–104
  28. Automorphisms of Coverings of Strongly Regular Graphs with Parameters (81,20,1,6)

    Mat. Zametki, 86:1 (2009),  22–36
  29. On the automorphism group of the Aschbacher graph

    Trudy Inst. Mat. i Mekh. UrO RAN, 15:2 (2009),  162–176
  30. Графы без 3-корон с некоторыми условиями регулярности

    Trudy Inst. Mat. i Mekh. UrO RAN, 14:4 (2008),  53–69
  31. A new estimate for the vertex number of an edge-regular graph

    Sibirsk. Mat. Zh., 48:4 (2007),  817–832
  32. The nonexistence of locally $\bar J(10,5)$-graphs

    Trudy Inst. Mat. i Mekh. UrO RAN, 13:1 (2007),  158–165
  33. On a class of coedge regular graphs

    Izv. RAN. Ser. Mat., 69:6 (2005),  95–114
  34. On Crown-Free Graphs with Regular $\mu$-Subgraphs, II

    Mat. Zametki, 74:3 (2003),  396–406
  35. Automorphisms of Aschbacher Graphs

    Algebra Logika, 40:2 (2001),  125–134
  36. Extensions of $\mathit{GQ}(4,2)$, the completely regular case

    Diskr. Mat., 13:3 (2001),  91–109
  37. On the structure of connected locally $GQ(3,9)$-graphs

    Diskretn. Anal. Issled. Oper., Ser. 1, 5:2 (1998),  61–77
  38. Locally Shrikhande graphs and their automorphisms

    Sibirsk. Mat. Zh., 39:5 (1998),  1085–1097
  39. On 2-locally Seidel graphs

    Izv. RAN. Ser. Mat., 61:4 (1997),  67–80
  40. The impact of 2-neighborhoods on graph structure

    Mat. Zametki, 62:6 (1997),  892–897


© Steklov Math. Inst. of RAS, 2026