|
|
Publications in Math-Net.Ru
-
Universal Verma modules and $W$-resolvents over Kač–Moody algebras
TMF, 122:3 (2000), 334–356
-
On formal series and infinite products over Lie algebras
Lobachevskii J. Math., 4 (1999), 207–218
-
Weyl algebras over quantum groups
TMF, 118:2 (1999), 190–204
-
Differential operators and differential calculus in quantum groups
Izv. RAN. Ser. Mat., 62:4 (1998), 25–50
-
Differential operators on graded algebras
Izv. RAN. Ser. Mat., 60:2 (1996), 49–72
-
Cartan-type algebras
Dokl. Akad. Nauk, 339:4 (1994), 442–445
-
On Quantum Methods in the Representation Theory of Reductive Lie Algebras
Funktsional. Anal. i Prilozhen., 28:2 (1994), 49–52
-
Constructive Modules and Extremal Projectors over Chevalley Algebras
Funktsional. Anal. i Prilozhen., 27:3 (1993), 5–14
-
The algebra of quantum bosons, theb Shubert filtration, and Lusztig bases
Izv. RAN. Ser. Mat., 57:6 (1993), 3–28
-
$S$-algebras and Harish-Chandra modules over symmetric Lie algebras
Izv. Akad. Nauk SSSR Ser. Mat., 54:4 (1990), 659–675
-
Extremal projectors and generalized Mickelsson algebras over reductive Lie algebras
Izv. Akad. Nauk SSSR Ser. Mat., 52:4 (1988), 758–773
-
The scientific work of M. A. Naĭmark
Trudy Mat. Inst. Steklov., 182 (1988), 250–254
-
Extremal cocycles of Weyl groups
Funktsional. Anal. i Prilozhen., 21:3 (1987), 11–21
-
An analogue of the Gel'fand–Tsetlin basis for symplectic Lie algebras
Uspekhi Mat. Nauk, 42:6(258) (1987), 193–194
-
Transvector algebras in the theory of representations of reductive
Lie algebras
Dokl. Akad. Nauk SSSR, 288:1 (1986), 32–35
-
$S$-algebras and Harish-Chandra modules over reductive Lie
algebras
Dokl. Akad. Nauk SSSR, 283:6 (1985), 1306–1308
-
Extremal-type equations and their resolvents over reductive Lie algebras
Funktsional. Anal. i Prilozhen., 19:4 (1985), 88–89
-
Minimal $K$-types and classification of irreducible representations of reductive Lie groups
Funktsional. Anal. i Prilozhen., 18:4 (1984), 79–80
-
$\mathrm{Z}$-algebras over reductive Lie algebras
Dokl. Akad. Nauk SSSR, 273:6 (1983), 1301–1304
-
$S$-algebras and Verma modules over reductive Lie algebras
Dokl. Akad. Nauk SSSR, 273:4 (1983), 785–788
-
Universal modules of class 0 over semisimple Lie algebras
Funktsional. Anal. i Prilozhen., 14:3 (1980), 81–82
-
Harmonic analysis on reductive Lie groups
Itogi Nauki i Tekhn. Ser. Mat. Anal., 17 (1979), 207–269
-
A description of the quasi-simple irreducible representations of the groups $U(n,1)$ and $\operatorname{Spin}(n,1)$
Izv. Akad. Nauk SSSR Ser. Mat., 41:1 (1977), 34–53
-
Discrete symmetry operators for reductive Lie groups
Izv. Akad. Nauk SSSR Ser. Mat., 40:5 (1976), 1055–1083
-
Cyclic modules for a complex semisimple Lie group
Izv. Akad. Nauk SSSR Ser. Mat., 37:3 (1973), 502–515
-
Representations of semisimple complex Lie groups
Itogi Nauki i Tekhn. Ser. Mat. Anal., 11 (1973), 51–90
-
Classification of extremally irreducible and normally irreducible representations of semisimple complex connected Lie groups
Izv. Akad. Nauk SSSR Ser. Mat., 35:3 (1971), 573–599
-
On the irreducible representations of a complex semisimple Lie group
Funktsional. Anal. i Prilozhen., 4:2 (1970), 85–86
-
Description of the completely irreducible representations of a complex semisimple Lie group
Izv. Akad. Nauk SSSR Ser. Mat., 34:1 (1970), 57–82
-
Harmonic analysis of functions on semisimple Lie groups. II
Izv. Akad. Nauk SSSR Ser. Mat., 33:6 (1969), 1255–1295
-
Operational calculus on a complex semisimple Lie group
Izv. Akad. Nauk SSSR Ser. Mat., 33:5 (1969), 931–973
-
The analysis of irreducibility in the class of elementary representations of a complex semisimple Lie group
Izv. Akad. Nauk SSSR Ser. Mat., 32:1 (1968), 108–133
-
An analog of the Cartan–Weyl theory for infinite-dimensional representations of a semi-simple complex Lie group
Dokl. Akad. Nauk SSSR, 175:1 (1967), 24–27
-
Symmetry in a class of elementary representations of a semisimple complex Lie group
Funktsional. Anal. i Prilozhen., 1:2 (1967), 15–38
-
Description of completely irreducible representations of a semi-simple complex Lie group
Dokl. Akad. Nauk SSSR, 171:1 (1966), 25–28
-
Operational calculus and theorems of Paley–Wiener type for a semi-simple complex Lie group
Dokl. Akad. Nauk SSSR, 170:6 (1966), 1243–1246
-
The structure of elementary representations of a semi-simple complex Lie group
Dokl. Akad. Nauk SSSR, 170:5 (1966), 1009–1012
-
Harmonic analysis of functions on semisimple Lie groups. I
Izv. Akad. Nauk SSSR Ser. Mat., 27:6 (1963), 1343–1394
-
On the theory of representations of complex and real Lie groups
Tr. Mosk. Mat. Obs., 12 (1963), 53–98
-
An elementary proof of a formula of Gel'fand and Naimark
Uspekhi Mat. Nauk, 18:6(114) (1963), 197–200
-
On the solution of a problem concerning polynomial invariants
Uspekhi Mat. Nauk, 18:6(114) (1963), 193–196
-
The classical groups. Spectral analysis of their finite-dimensional representations
Uspekhi Mat. Nauk, 17:1(103) (1962), 27–120
-
Description of all irreducible representations of an arbitrary connected Lie group
Dokl. Akad. Nauk SSSR, 139:6 (1961), 1291–1294
-
A general method for spectral analysis of linear representations
Uspekhi Mat. Nauk, 16:5(101) (1961), 220–221
-
A description of a certain class of Lorentz group representations
Dokl. Akad. Nauk SSSR, 121:4 (1958), 586–589
-
Béla Szőkefalvi-Nagy (obituary)
Uspekhi Mat. Nauk, 54:4(328) (1999), 143–146
-
Mark Aronovich Naimark (obituary)
Uspekhi Mat. Nauk, 35:4(214) (1980), 135–140
-
Sergei Vasil'evich Fomin (obituary)
Uspekhi Mat. Nauk, 30:5(185) (1975), 2
© , 2026