RUS  ENG
Full version
PEOPLE

Zhelobenko Dmitry Petrovich

Publications in Math-Net.Ru

  1. Universal Verma modules and $W$-resolvents over Kač–Moody algebras

    TMF, 122:3 (2000),  334–356
  2. On formal series and infinite products over Lie algebras

    Lobachevskii J. Math., 4 (1999),  207–218
  3. Weyl algebras over quantum groups

    TMF, 118:2 (1999),  190–204
  4. Differential operators and differential calculus in quantum groups

    Izv. RAN. Ser. Mat., 62:4 (1998),  25–50
  5. Differential operators on graded algebras

    Izv. RAN. Ser. Mat., 60:2 (1996),  49–72
  6. Cartan-type algebras

    Dokl. Akad. Nauk, 339:4 (1994),  442–445
  7. On Quantum Methods in the Representation Theory of Reductive Lie Algebras

    Funktsional. Anal. i Prilozhen., 28:2 (1994),  49–52
  8. Constructive Modules and Extremal Projectors over Chevalley Algebras

    Funktsional. Anal. i Prilozhen., 27:3 (1993),  5–14
  9. The algebra of quantum bosons, theb Shubert filtration, and Lusztig bases

    Izv. RAN. Ser. Mat., 57:6 (1993),  3–28
  10. $S$-algebras and Harish-Chandra modules over symmetric Lie algebras

    Izv. Akad. Nauk SSSR Ser. Mat., 54:4 (1990),  659–675
  11. Extremal projectors and generalized Mickelsson algebras over reductive Lie algebras

    Izv. Akad. Nauk SSSR Ser. Mat., 52:4 (1988),  758–773
  12. The scientific work of M. A. Naĭmark

    Trudy Mat. Inst. Steklov., 182 (1988),  250–254
  13. Extremal cocycles of Weyl groups

    Funktsional. Anal. i Prilozhen., 21:3 (1987),  11–21
  14. An analogue of the Gel'fand–Tsetlin basis for symplectic Lie algebras

    Uspekhi Mat. Nauk, 42:6(258) (1987),  193–194
  15. Transvector algebras in the theory of representations of reductive Lie algebras

    Dokl. Akad. Nauk SSSR, 288:1 (1986),  32–35
  16. $S$-algebras and Harish-Chandra modules over reductive Lie algebras

    Dokl. Akad. Nauk SSSR, 283:6 (1985),  1306–1308
  17. Extremal-type equations and their resolvents over reductive Lie algebras

    Funktsional. Anal. i Prilozhen., 19:4 (1985),  88–89
  18. Minimal $K$-types and classification of irreducible representations of reductive Lie groups

    Funktsional. Anal. i Prilozhen., 18:4 (1984),  79–80
  19. $\mathrm{Z}$-algebras over reductive Lie algebras

    Dokl. Akad. Nauk SSSR, 273:6 (1983),  1301–1304
  20. $S$-algebras and Verma modules over reductive Lie algebras

    Dokl. Akad. Nauk SSSR, 273:4 (1983),  785–788
  21. Universal modules of class 0 over semisimple Lie algebras

    Funktsional. Anal. i Prilozhen., 14:3 (1980),  81–82
  22. Harmonic analysis on reductive Lie groups

    Itogi Nauki i Tekhn. Ser. Mat. Anal., 17 (1979),  207–269
  23. A description of the quasi-simple irreducible representations of the groups $U(n,1)$ and $\operatorname{Spin}(n,1)$

    Izv. Akad. Nauk SSSR Ser. Mat., 41:1 (1977),  34–53
  24. Discrete symmetry operators for reductive Lie groups

    Izv. Akad. Nauk SSSR Ser. Mat., 40:5 (1976),  1055–1083
  25. Cyclic modules for a complex semisimple Lie group

    Izv. Akad. Nauk SSSR Ser. Mat., 37:3 (1973),  502–515
  26. Representations of semisimple complex Lie groups

    Itogi Nauki i Tekhn. Ser. Mat. Anal., 11 (1973),  51–90
  27. Classification of extremally irreducible and normally irreducible representations of semisimple complex connected Lie groups

    Izv. Akad. Nauk SSSR Ser. Mat., 35:3 (1971),  573–599
  28. On the irreducible representations of a complex semisimple Lie group

    Funktsional. Anal. i Prilozhen., 4:2 (1970),  85–86
  29. Description of the completely irreducible representations of a complex semisimple Lie group

    Izv. Akad. Nauk SSSR Ser. Mat., 34:1 (1970),  57–82
  30. Harmonic analysis of functions on semisimple Lie groups. II

    Izv. Akad. Nauk SSSR Ser. Mat., 33:6 (1969),  1255–1295
  31. Operational calculus on a complex semisimple Lie group

    Izv. Akad. Nauk SSSR Ser. Mat., 33:5 (1969),  931–973
  32. The analysis of irreducibility in the class of elementary representations of a complex semisimple Lie group

    Izv. Akad. Nauk SSSR Ser. Mat., 32:1 (1968),  108–133
  33. An analog of the Cartan–Weyl theory for infinite-dimensional representations of a semi-simple complex Lie group

    Dokl. Akad. Nauk SSSR, 175:1 (1967),  24–27
  34. Symmetry in a class of elementary representations of a semisimple complex Lie group

    Funktsional. Anal. i Prilozhen., 1:2 (1967),  15–38
  35. Description of completely irreducible representations of a semi-simple complex Lie group

    Dokl. Akad. Nauk SSSR, 171:1 (1966),  25–28
  36. Operational calculus and theorems of Paley–Wiener type for a semi-simple complex Lie group

    Dokl. Akad. Nauk SSSR, 170:6 (1966),  1243–1246
  37. The structure of elementary representations of a semi-simple complex Lie group

    Dokl. Akad. Nauk SSSR, 170:5 (1966),  1009–1012
  38. Harmonic analysis of functions on semisimple Lie groups. I

    Izv. Akad. Nauk SSSR Ser. Mat., 27:6 (1963),  1343–1394
  39. On the theory of representations of complex and real Lie groups

    Tr. Mosk. Mat. Obs., 12 (1963),  53–98
  40. An elementary proof of a formula of Gel'fand and Naimark

    Uspekhi Mat. Nauk, 18:6(114) (1963),  197–200
  41. On the solution of a problem concerning polynomial invariants

    Uspekhi Mat. Nauk, 18:6(114) (1963),  193–196
  42. The classical groups. Spectral analysis of their finite-dimensional representations

    Uspekhi Mat. Nauk, 17:1(103) (1962),  27–120
  43. Description of all irreducible representations of an arbitrary connected Lie group

    Dokl. Akad. Nauk SSSR, 139:6 (1961),  1291–1294
  44. A general method for spectral analysis of linear representations

    Uspekhi Mat. Nauk, 16:5(101) (1961),  220–221
  45. A description of a certain class of Lorentz group representations

    Dokl. Akad. Nauk SSSR, 121:4 (1958),  586–589

  46. Béla Szőkefalvi-Nagy (obituary)

    Uspekhi Mat. Nauk, 54:4(328) (1999),  143–146
  47. Mark Aronovich Naimark (obituary)

    Uspekhi Mat. Nauk, 35:4(214) (1980),  135–140
  48. Sergei Vasil'evich Fomin (obituary)

    Uspekhi Mat. Nauk, 30:5(185) (1975),  2


© Steklov Math. Inst. of RAS, 2026