RUS  ENG
Full version
PEOPLE

Tyurin Nikolai Andreevich

Publications in Math-Net.Ru

  1. Examples of Hamiltonian-minimal Lagrangian submanifolds in $\operatorname{Gr}(r, n)$

    Izv. RAN. Ser. Mat., 89:2 (2025),  146–160
  2. Special Bohr–Sommerfeld geometry

    Uspekhi Mat. Nauk, 80:2(482) (2025),  123–164
  3. Ample Divisors and Lagrangian Submanifolds

    Trudy Mat. Inst. Steklova, 329 (2025),  237–252
  4. Lagrangian geometry of the Grassmannian $\mathrm{Gr}(1, n)$

    Mat. Zametki, 116:6 (2024),  998–1005
  5. Symplectic reduction and Lagrangian submanifolds of $\operatorname{Gr}(1, n)$

    Mat. Sb., 215:10 (2024),  167–182
  6. Special Bohr–Sommerfeld geometry: variations

    Izv. RAN. Ser. Mat., 87:3 (2023),  184–205
  7. Example of a Moduli Space of $D$-Exact Lagrangian Submanifolds: Spheres in the Flag Variety for $\mathbb C^3$

    Trudy Mat. Inst. Steklova, 320 (2023),  311–323
  8. On the Lagrangian Geometry of the Tangent Bundle of a Toric Variety

    Mat. Zametki, 111:4 (2022),  638–640
  9. Lagrangian Geometry of Algebraic Manifolds

    Phys. Part. Nucl. Lett., 19 (2022),  337–342
  10. Collective obituary. Sergey A. Kuleshov (24.12.1962 – 15.05.2021)

    Math. Ed., 2021, no. 2(98),  2–4
  11. Mironov Lagrangian cycles in algebraic varieties

    Mat. Sb., 212:3 (2021),  128–138
  12. Examples of Mironov cycles in Grassmannians

    Sibirsk. Mat. Zh., 62:2 (2021),  457–465
  13. On the Kählerization of the Moduli Space of Bohr–Sommerfeld Lagrangian Submanifolds

    Mat. Zametki, 107:6 (2020),  945–947
  14. The moduli space of $D$-exact Lagrangian submanifolds

    Sibirsk. Mat. Zh., 60:4 (2019),  907–921
  15. Monotonic Lagrangian Tori of Standard and Nonstandard Types in Toric and Pseudotoric Fano Varieties

    Trudy Mat. Inst. Steklova, 307 (2019),  291–305
  16. Special Bohr–Sommerfeld Lagrangian submanifolds of algebraic varieties

    Izv. RAN. Ser. Mat., 82:3 (2018),  170–191
  17. Pseudotoric structures: Lagrangian submanifolds and Lagrangian fibrations

    Uspekhi Mat. Nauk, 72:3(435) (2017),  131–169
  18. Special Bohr–Sommerfeld Lagrangian submanifolds

    Izv. RAN. Ser. Mat., 80:6 (2016),  274–293
  19. On Lagrangian Spheres in the Flag Variety $F^3$

    Mat. Zametki, 98:2 (2015),  314–317
  20. Pseudotoric structures on a hyperplane section of a toric manifold

    TMF, 182:2 (2015),  195–212
  21. Pseudotoric Structures and Lagrangian Spheres in the Flag Variety $F^3$

    Mat. Zametki, 96:3 (2014),  476–479
  22. Pseudotoric structures on toric symplectic manifolds

    TMF, 175:2 (2013),  147–158
  23. Lifts of Lagrangian Tori

    Mat. Zametki, 91:5 (2012),  784–786
  24. Nonstandard Lagrangian tori and pseudotoric structures

    TMF, 171:2 (2012),  321–325
  25. Chekanov tori and pseudotoric structures

    Uspekhi Mat. Nauk, 66:1(397) (2011),  185–186
  26. Special Lagrangian fibrations on the flag variety $F^3$

    TMF, 167:2 (2011),  193–205
  27. Nontoric Foliations by Lagrangian Tori of Toric Fano Varieties

    Mat. Zametki, 87:1 (2010),  48–59
  28. Pseudotoric Lagrangian fibrations of toric and nontoric Fano varieties

    TMF, 162:3 (2010),  307–333
  29. Birational Maps and Special Lagrangian Fibrations

    Trudy Mat. Inst. Steklova, 264 (2009),  209–211
  30. Lagrangian tori in the projective plane

    TMF, 158:1 (2009),  3–22
  31. Universal Maslov class of a Bohr–Sommerfeld Lagrangian embedding into a pseudo-Einstein manifold

    TMF, 150:2 (2007),  325–337
  32. Algebraic Lagrangian geometry: three geometric observations

    Izv. RAN. Ser. Mat., 69:1 (2005),  179–194
  33. Existence theorem for the moduli space of Bohr–Sommerfeld Lagrangian cycles

    Uspekhi Mat. Nauk, 60:3(363) (2005),  179–180
  34. Space of Hermitian Triples and Ashtekar–Isham Quantization

    TMF, 139:1 (2004),  145–157
  35. Irreducibility of the ALG(a)-Quantization

    Trudy Mat. Inst. Steklova, 241 (2003),  265–271
  36. The space of Hermitian triples: local geometry

    Izv. RAN. Ser. Mat., 66:4 (2002),  205–224
  37. Dynamical correspondence in algebraic Lagrangian geometry

    Izv. RAN. Ser. Mat., 66:3 (2002),  175–196
  38. Instantons and monopoles

    Uspekhi Mat. Nauk, 57:2(344) (2002),  85–138
  39. The correspondence principle in Abelian Lagrangian geometry

    Izv. RAN. Ser. Mat., 65:4 (2001),  191–204
  40. Spaces of Hermitian triples and the Seiberg–Witten equations

    Izv. RAN. Ser. Mat., 65:1 (2001),  197–224
  41. Holomorphy and semiholomorphy

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 70 (2001),  236–254
  42. Abelian monopoles: the case of a positive-dimensional moduli space

    Izv. RAN. Ser. Mat., 64:1 (2000),  197–210
  43. Abelian monopoles and complex geometry

    Mat. Zametki, 65:3 (1999),  420–428
  44. Semiholomorphic structures

    Izv. RAN. Ser. Mat., 62:5 (1998),  207–224
  45. Necessary and sufficient conditions for a deformation of a B-monopole into an instanton

    Izv. RAN. Ser. Mat., 60:1 (1996),  211–224

  46. Yurii Gennadievich Prokhorov (on his sixtieth birthday)

    Uspekhi Mat. Nauk, 80:4(484) (2025),  183–192
  47. Andrei Igorevich Shafarevich (on his sixtieth birthday)

    Uspekhi Mat. Nauk, 79:3(477) (2024),  185–188
  48. Igor Rostislavovich Shafarevich (on the centenary of his birthday)

    Uspekhi Mat. Nauk, 78:6(474) (2023),  187–198
  49. Vladimir Aleksandrovich Voevodsky (obituary)

    Uspekhi Mat. Nauk, 73:3(441) (2018),  157–168
  50. Letter to the editors

    Izv. RAN. Ser. Mat., 68:3 (2004),  219–220
  51. Preface

    Trudy Mat. Inst. Steklova, 246 (2004),  7–9
  52. Andrei Nikolaevich Tyurin (obituary)

    Uspekhi Mat. Nauk, 58:3(351) (2003),  176–182


© Steklov Math. Inst. of RAS, 2026