RUS  ENG
Full version
PEOPLE

Kovalevsky Alexander Albertovich

Publications in Math-Net.Ru

  1. Nonlinear elliptic variational inequalities with unilateral pointwise functional constraints in variable domains

    Trudy Inst. Mat. i Mekh. UrO RAN, 31:4 (2025),  132–148
  2. Conditions for the limit summability of solutions of nonlinear elliptic equations with degenerate coercivity and $L^1$-data

    Vladikavkaz. Mat. Zh., 27:2 (2025),  35–51
  3. Nonlinear variational inequalities with bilateral constraints coinciding on a set of positive measure

    Dokl. RAN. Math. Inf. Proc. Upr., 515 (2024),  79–83
  4. Criteria for the existence of weak solutions of the Dirichlet problem for nonlinear degenerate elliptic equations for any right-hand side in $L^1$

    Mat. Zametki, 116:3 (2024),  482–485
  5. On the convergence of minimizers and minimum values in variational problems with pointwise functional constraints in variable domains

    Trudy Inst. Mat. i Mekh. UrO RAN, 27:1 (2021),  246–257
  6. Summability of Solutions of the Dirichlet Problem for Nonlinear Elliptic Equations with Right-Hand Side in Classes Close to $L^1$

    Mat. Zametki, 107:6 (2020),  934–939
  7. Integrability Properties of Functions with a Given Behavior of Distribution Functions and Some Applications

    Trudy Inst. Mat. i Mekh. UrO RAN, 25:1 (2019),  78–92
  8. On the Convergence of Solutions of Variational Problems with Implicit Pointwise Constraints in Variable Domains

    Funktsional. Anal. i Prilozhen., 52:2 (2018),  82–85
  9. On the convergence of solutions of variational problems with implicit constraints defined by rapidly oscillating functions

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:2 (2018),  107–122
  10. Variational problems with unilateral pointwise functional constraints in variable domains

    Trudy Inst. Mat. i Mekh. UrO RAN, 23:2 (2017),  133–150
  11. Convergence of solutions of bilateral problems in variable domains and related questions

    Ural Math. J., 3:2 (2017),  51–66
  12. On the convergence of solutions of variational problems with bilateral obstacles in variable domains

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:1 (2016),  140–152
  13. Toward the $L^1$-theory of degenerate anisotropic elliptic variational inequalities

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:1 (2015),  137–152
  14. On $T$-solutions of degenerate anisotropic elliptic variational inequalities with $L^1$-data

    Izv. RAN. Ser. Mat., 75:1 (2011),  101–160
  15. A priori properties of solutions of nonlinear equations with degenerate coercivity and $L^1$-data

    CMFD, 16 (2006),  47–67
  16. On the sets of boundedness of solutions for a class of degenerate nonlinear elliptic fourth-order equations with $L^1$-data

    Fundam. Prikl. Mat., 12:4 (2006),  99–112
  17. On the summability of entropy solutions for the Dirichlet problem in a class of non-linear elliptic fourth-order equations

    Izv. RAN. Ser. Mat., 67:5 (2003),  35–48
  18. Integrability of Solutions of Nonlinear Elliptic Equations with Right-Hand Sides from Logarithmic Classes

    Mat. Zametki, 74:5 (2003),  676–685
  19. Entropy solutions of the Dirichlet problem for a class of non-linear elliptic fourth-order equations with right-hand sides in $L^1$

    Izv. RAN. Ser. Mat., 65:2 (2001),  27–80
  20. Integrability of Solutions of Nonlinear Elliptic Equations with Right-Hand Sides from Classes Close to $L^1$

    Mat. Zametki, 70:3 (2001),  375–385
  21. A necessary condition for the strong $G$-convergence of nonlinear operators of Dirichlet problems with variable domain

    Differ. Uravn., 36:4 (2000),  537–541
  22. $G$-compactness of sequences of non-linear operators of Dirichlet problems with a variable domain of definition

    Izv. RAN. Ser. Mat., 60:1 (1996),  133–164
  23. On the uniform boundedness of solutions of nonlinear elliptic variational inequalities in variable domains

    Differ. Uravn., 30:8 (1994),  1370–1373
  24. $G$-convergence and homogenization of nonlinear elliptic operators in divergence form with variable domain

    Izv. RAN. Ser. Mat., 58:3 (1994),  3–35

  25. Valerii Vladimirovich Volchkov (on his sixtieth birthday)

    Uspekhi Mat. Nauk, 80:2(482) (2025),  184–189
  26. Anatolii Fedorovich Tedeev (on his 70's anniversary)

    Vladikavkaz. Mat. Zh., 27:2 (2025),  148–149


© Steklov Math. Inst. of RAS, 2026