RUS  ENG
Full version
PEOPLE

Timofeev Nikolai Michailovich

Publications in Math-Net.Ru

  1. The Concentration Function of Additive Functions with Special Weight

    Mat. Zametki, 76:2 (2004),  265–285
  2. The Concentration Function of Additive Functions with Nonmultiplicative Weight

    Mat. Zametki, 75:6 (2004),  877–894
  3. Mean Values of Multiplicative Functions with Weight

    Mat. Zametki, 70:6 (2001),  890–908
  4. On the Difference between the Number of Prime Divisors from Subsets for Consecutive Integers

    Mat. Zametki, 68:5 (2000),  725–738
  5. On the difference of the number of prime divisors of consecutive numbers

    Mat. Zametki, 66:4 (1999),  579–595
  6. Problems similar to the additive divisor problem

    Mat. Zametki, 64:3 (1998),  443–456
  7. An additive divisor problem with a growing number of factors

    Mat. Zametki, 61:3 (1997),  391–406
  8. Distribution in the mean in progressions of numbers with a large number of prime factors

    Trudy Mat. Inst. Steklova, 218 (1997),  403–414
  9. The Titchmarsh problem with integers having a given number of prime divisors

    Mat. Zametki, 59:4 (1996),  586–603
  10. Additive problems for numbers having a given number of prime divisors

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1996, no. 6,  98–101
  11. The Hardy–Littlewood problem for numbers with a fixed number of prime divisors

    Izv. RAN. Ser. Mat., 59:6 (1995),  181–206
  12. Integral limit theorems for sums of additive functions with shifted arguments

    Izv. RAN. Ser. Mat., 59:2 (1995),  179–204
  13. The Hardy–Ramanujan and Halasz inequalities for shifted primes

    Mat. Zametki, 57:5 (1995),  747–764
  14. Distribution of numbers with a given number of prime divisors in progressions

    Mat. Zametki, 55:2 (1994),  144–156
  15. Arithmetic functions on the set of shifted primes

    Trudy Mat. Inst. Steklov., 207 (1994),  339–346
  16. The bound of sums of multiplicative functions with shifted arguments

    Mat. Zametki, 54:5 (1993),  84–98
  17. Distribution of the values of a sum of additive functions with shifted arguments

    Mat. Zametki, 52:5 (1992),  113–124
  18. Multiplicative functions on the set of shifted prime numbers

    Izv. Akad. Nauk SSSR Ser. Mat., 55:6 (1991),  1238–1256
  19. Analog of a theorem of Halász in the case of a generalization of the additive problem of divisors

    Mat. Zametki, 48:1 (1990),  116–127
  20. One additive problem

    Mat. Zametki, 46:4 (1989),  25–33
  21. An additive divisor problem and its generalization

    Dokl. Akad. Nauk SSSR, 293:4 (1987),  801–804
  22. Distribution in the mean of arithmetic functions in short intervals in progressions

    Izv. Akad. Nauk SSSR Ser. Mat., 51:2 (1987),  341–362
  23. The additive problem of divisors and its generalisation

    Zap. Nauchn. Sem. LOMI, 151 (1986),  184–194
  24. The Vinogradov–Bombieri theorem

    Mat. Zametki, 38:6 (1985),  801–809
  25. Stable limit laws for additive arithmetic functions

    Mat. Zametki, 37:4 (1985),  465–473
  26. Mean distribution of arithmetic functions over progressions (theorems of Vinogradov–Bombieri type)

    Mat. Sb. (N.S.), 125(167):4(12) (1984),  558–572
  27. Distribution of values of additive functions on the sequence $\{p+1\}$

    Mat. Zametki, 33:6 (1983),  933–942
  28. The analogue of the law of large numbers for additive functions on sparse sets

    Mat. Zametki, 18:5 (1975),  687–698
  29. Distribution of values of additive functions

    Uspekhi Mat. Nauk, 28:1(169) (1973),  243–244
  30. Estimation of the remainder term in one-dimensional asymptotic laws

    Dokl. Akad. Nauk SSSR, 200:2 (1971),  298–301
  31. Sums of multiplicative functions

    Dokl. Akad. Nauk SSSR, 193:5 (1970),  992–995


© Steklov Math. Inst. of RAS, 2026