|
|
Publications in Math-Net.Ru
-
The Concentration Function of Additive Functions with Special Weight
Mat. Zametki, 76:2 (2004), 265–285
-
The Concentration Function of Additive Functions with Nonmultiplicative Weight
Mat. Zametki, 75:6 (2004), 877–894
-
Mean Values of Multiplicative Functions with Weight
Mat. Zametki, 70:6 (2001), 890–908
-
On the Difference between the Number of Prime Divisors from Subsets for Consecutive Integers
Mat. Zametki, 68:5 (2000), 725–738
-
On the difference of the number of prime divisors of consecutive numbers
Mat. Zametki, 66:4 (1999), 579–595
-
Problems similar to the additive divisor problem
Mat. Zametki, 64:3 (1998), 443–456
-
An additive divisor problem with a growing number of factors
Mat. Zametki, 61:3 (1997), 391–406
-
Distribution in the mean in progressions of numbers with a large number of prime factors
Trudy Mat. Inst. Steklova, 218 (1997), 403–414
-
The Titchmarsh problem with integers having a given number of prime divisors
Mat. Zametki, 59:4 (1996), 586–603
-
Additive problems for numbers having a given number of prime divisors
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1996, no. 6, 98–101
-
The Hardy–Littlewood problem for numbers with a fixed number of prime divisors
Izv. RAN. Ser. Mat., 59:6 (1995), 181–206
-
Integral limit theorems for sums of additive functions with shifted arguments
Izv. RAN. Ser. Mat., 59:2 (1995), 179–204
-
The Hardy–Ramanujan and Halasz inequalities for shifted primes
Mat. Zametki, 57:5 (1995), 747–764
-
Distribution of numbers with a given number of prime divisors in progressions
Mat. Zametki, 55:2 (1994), 144–156
-
Arithmetic functions on the set of shifted primes
Trudy Mat. Inst. Steklov., 207 (1994), 339–346
-
The bound of sums of multiplicative functions with shifted arguments
Mat. Zametki, 54:5 (1993), 84–98
-
Distribution of the values of a sum of additive functions with shifted arguments
Mat. Zametki, 52:5 (1992), 113–124
-
Multiplicative functions on the set of shifted prime numbers
Izv. Akad. Nauk SSSR Ser. Mat., 55:6 (1991), 1238–1256
-
Analog of a theorem of Halász in the case of a generalization of the additive problem of divisors
Mat. Zametki, 48:1 (1990), 116–127
-
One additive problem
Mat. Zametki, 46:4 (1989), 25–33
-
An additive divisor problem and its generalization
Dokl. Akad. Nauk SSSR, 293:4 (1987), 801–804
-
Distribution in the mean of arithmetic functions in short intervals in progressions
Izv. Akad. Nauk SSSR Ser. Mat., 51:2 (1987), 341–362
-
The additive problem of divisors and its generalisation
Zap. Nauchn. Sem. LOMI, 151 (1986), 184–194
-
The Vinogradov–Bombieri theorem
Mat. Zametki, 38:6 (1985), 801–809
-
Stable limit laws for additive arithmetic functions
Mat. Zametki, 37:4 (1985), 465–473
-
Mean distribution of arithmetic functions over progressions (theorems of Vinogradov–Bombieri type)
Mat. Sb. (N.S.), 125(167):4(12) (1984), 558–572
-
Distribution of values of additive functions on the sequence $\{p+1\}$
Mat. Zametki, 33:6 (1983), 933–942
-
The analogue of the law of large numbers for additive functions on sparse sets
Mat. Zametki, 18:5 (1975), 687–698
-
Distribution of values of additive functions
Uspekhi Mat. Nauk, 28:1(169) (1973), 243–244
-
Estimation of the remainder term in one-dimensional asymptotic laws
Dokl. Akad. Nauk SSSR, 200:2 (1971), 298–301
-
Sums of multiplicative functions
Dokl. Akad. Nauk SSSR, 193:5 (1970), 992–995
© , 2026