RUS  ENG
Full version
PEOPLE

Ageev Sergei Mikhailovich

Publications in Math-Net.Ru

  1. Alternative construction of the determinant theory

    Proceedings of the Institute of Mathematics of the NAS of Belarus, 32:2 (2024),  93–96
  2. On orthogonal projections of Nöbeling spaces

    Izv. RAN. Ser. Mat., 84:4 (2020),  5–40
  3. On exponents of homogeneous spaces

    Tr. Inst. Mat., 26:1 (2018),  9–12
  4. Injective objects of the category of stratified spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 2,  3–13
  5. On a Classifying Property of Regular Representations

    Funktsional. Anal. i Prilozhen., 50:4 (2016),  2–12
  6. On the exponent of $G$-spaces and isovariant extensors

    Mat. Sb., 207:2 (2016),  3–44
  7. Isovariant extensors and the characterization of equivariant homotopy equivalences

    Izv. RAN. Ser. Mat., 76:5 (2012),  3–28
  8. The Covering Homotopy Extension Problem for Compact Transformation Groups

    Mat. Zametki, 92:6 (2012),  803–818
  9. On Palais universal $G$-spaces and isovariant absolute extensors

    Mat. Sb., 203:6 (2012),  3–34
  10. On extending actions of groups

    Mat. Sb., 201:2 (2010),  3–28
  11. Axiomatic method of partitions in the theory of Nöbeling spaces. III. Consistency of the axiom system

    Mat. Sb., 198:7 (2007),  3–30
  12. Axiomatic method of partitions in the theory of Nöbeling spaces. II. Unknotting theorem

    Mat. Sb., 198:5 (2007),  3–32
  13. Axiomatic method of partitions in the theory of Nöbeling spaces. I. Improvement of partition connectivity

    Mat. Sb., 198:3 (2007),  3–50
  14. Nonpolyhedral proof of the Michael finite-dimensional selection theorem

    Fundam. Prikl. Mat., 11:4 (2005),  3–22
  15. Banach–Mazur Compacta are Aleksandrov Compactifications of $Q$-manifolds

    Mat. Zametki, 76:1 (2004),  3–10
  16. The complement $Q_E(n)$ of the point Eucl of Euclidean space in the Banach–Mazur compactum $Q(n)$ is a $Q$-manifold

    Uspekhi Mat. Nauk, 58:3(351) (2003),  185–186
  17. The Jaworowski Method in the Problem of the Preservation of Extensor Properties by the Orbit Functor

    Mat. Zametki, 71:3 (2002),  470–473
  18. The method of approximative extension of mappings in the theory of extensors

    Sibirsk. Mat. Zh., 43:4 (2002),  739–756
  19. Fine homotopy equivalence and injectivity

    Mat. Zametki, 65:6 (1999),  921–924
  20. The Banach–Mazur compactum is not homeomorphic to the Hilbert cube

    Uspekhi Mat. Nauk, 53:1(319) (1998),  209–210
  21. A unified finite-dimensional selection theorem

    Sibirsk. Mat. Zh., 39:5 (1998),  971–981
  22. The Banach–Mazur compactum $Q(n)$ is an absolute retract

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1998, no. 1,  11–13
  23. Obstructions to the extension of partial maps

    Mat. Zametki, 62:6 (1997),  803–812
  24. On the softness of the Dranishnikov resolution

    Trudy Mat. Inst. Steklova, 212 (1996),  7–32
  25. A characterization of the free actions of zero-dimensional compact groups on $k$-dimensional Menger compacta

    Izv. RAN. Ser. Mat., 59:2 (1995),  3–46
  26. On a problem of Zambakhidze–Smirnov

    Mat. Zametki, 58:1 (1995),  3–11
  27. Equivariant generalization of Michael's selection theorem

    Mat. Zametki, 57:4 (1995),  498–508
  28. Manifolds modeled by an equivariant Hilbert cube

    Mat. Sb., 185:12 (1994),  19–48
  29. On adjunction spaces of certain types of spaces

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1994, no. 6,  19–23
  30. Extensor properties of orbit spaces and the problem of the continuation of an action

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1994, no. 1,  11–16
  31. Topological proofs of Keller's theorem and an equivariant version of it

    Izv. RAN. Ser. Mat., 57:3 (1993),  213–224
  32. Classification of $G$-spaces

    Izv. RAN. Ser. Mat., 56:6 (1992),  1345–1357
  33. Classifying spaces for free actions, and the Hilbert–Smith conjecture

    Mat. Sb., 183:1 (1992),  143–151
  34. On extending the action

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1992, no. 5,  20–23
  35. The equivariant theorem of Dugundji

    Uspekhi Mat. Nauk, 45:5(275) (1990),  179–180
  36. Equivariant classification of continuous functions on $G$-spaces

    Uspekhi Mat. Nauk, 39:4(238) (1984),  149–150
  37. Functional methods ifi ihe theory of the absolute

    Uspekhi Mat. Nauk, 38:5(233) (1983),  177–178

  38. Erratum: “On the extension of action”

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1993, no. 4,  93


© Steklov Math. Inst. of RAS, 2026