RUS  ENG
Full version
PEOPLE

Kirillov Andrei Igorevich

Publications in Math-Net.Ru

  1. On the evolution of states of controlled qubits

    TMF, 208:2 (2021),  218–232
  2. Distances between stationary distributions of diffusions and solvability of nonlinear Fokker–Planck–Kolmogorov equations

    Teor. Veroyatnost. i Primenen., 62:1 (2017),  16–43
  3. The Kantorovich and variation distances between invariant measures of diffusions and nonlinear stationary Fokker–Planck–Kolmogorov equations

    Mat. Zametki, 96:5 (2014),  855–863
  4. Stochastic model of phase transition and metastability

    TMF, 123:1 (2000),  94–106
  5. Travel time of a quantum particle through a given domain

    TMF, 118:1 (1999),  51–66
  6. Generalized differentiable product measures

    Mat. Zametki, 63:1 (1998),  37–55
  7. Stochastic quantization using a kerneled Langevin equation

    TMF, 115:1 (1998),  46–55
  8. Generating functionals of $S$-matrix and Schwinger functions in WN-analysis. I

    TMF, 111:1 (1997),  3–14
  9. On quantization of systems with actions unbounded from below

    TMF, 109:2 (1996),  175–186
  10. On the reconstruction of measures from their logarithmic derivatives

    Izv. RAN. Ser. Mat., 59:1 (1995),  121–138
  11. Sine-Gordon type field in spacetime of arbitrary dimension. II: Stochastic quantization

    TMF, 105:2 (1995),  179–197
  12. Infinite-dimensional analysis and quantum theory as semimartingale calculus

    Uspekhi Mat. Nauk, 49:3(297) (1994),  43–92
  13. Field of sine-Gordon type in spacetime of arbitrary dimension: Existence of the nelson measure

    TMF, 98:1 (1994),  12–28
  14. Prescription of measures on functional spaces by means of numerical densities and path integrals

    Mat. Zametki, 53:5 (1993),  152–157
  15. Brownian motion with drift in a Hilbert space and its application in integration theory

    Teor. Veroyatnost. i Primenen., 38:3 (1993),  629–634
  16. On two mathematical problems of canonical quantization. IV

    TMF, 93:2 (1992),  249–263
  17. Two mathematical problems of canonical quantization. III. Stochastic vacuum mechanics

    TMF, 91:3 (1992),  377–395
  18. On the separability of $L^p$ spaces in the case of measures on locally convex spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 7,  77
  19. Two mathematical problems of canonical quantization. II

    TMF, 87:2 (1991),  163–172
  20. Two mathematical problems of canonical quantization. I

    TMF, 87:1 (1991),  22–33
  21. Integral representation for electromagnetic form factors of two-particle systems

    TMF, 20:2 (1974),  194–201

  22. Oleg Georgievich Smolyanov (on his 70th birthday)

    Uspekhi Mat. Nauk, 64:1(385) (2009),  175–177


© Steklov Math. Inst. of RAS, 2026