RUS  ENG
Full version
PEOPLE

Nedelko Ilja Vitaljevich

Publications in Math-Net.Ru

  1. Solutions of a problem of ‘reaction–diffusion’ type with internal transition layers in the case of non-linearity of quadratic type

    Izv. RAN. Ser. Mat., 73:1 (2009),  157–176
  2. Onset of solutions with internal layers approaching the domain boundary

    Differ. Uravn., 42:1 (2006),  101–113
  3. Existence of solutions with interior transition layers touching the boundary

    Mat. Zametki, 77:1 (2005),  80–92
  4. On the Formation of a Solution with an Internal Layer in a Parabolic System with Different Powers of a Small Parameter

    Differ. Uravn., 40:3 (2004),  356–367
  5. Global domain of attraction of a step-like contrast structure in a critical case

    Zh. Vychisl. Mat. Mat. Fiz., 44:8 (2004),  1410–1431
  6. On the global domain of influence of stable steplike contrast structures in the Dirichlet problem

    Zh. Vychisl. Mat. Mat. Fiz., 44:6 (2004),  1039–1061
  7. Instability of Multidimensional Contrast Structures

    Differ. Uravn., 38:2 (2002),  222–233
  8. On the global domain of influence of stable solutions with interior layers in the two-dimensional case

    Izv. RAN. Ser. Mat., 66:1 (2002),  3–42
  9. Step-type contrast structure in a system of two singularly perturbed parabolic equations

    Mat. Model., 13:12 (2001),  23–42
  10. Asymptotic Stability, Local Uniqueness, and Domain of Attraction of Two-Dimensional Step Type Contrast Structures

    Mat. Zametki, 69:1 (2001),  82–91
  11. Global influence domains of stable solutions with internal layers

    Mat. Sb., 192:5 (2001),  13–52
  12. Asymptotic stability of solutions of singularly perturbed boundary value problems with boundary and internal layers

    Differ. Uravn., 36:2 (2000),  198–208
  13. A steplike contrast structure in a singularly perturbed system of elliptic equations with different power of a small parameter

    Zh. Vychisl. Mat. Mat. Fiz., 40:6 (2000),  877–899
  14. On periodic contrast structures in singularly perturbed elliptic equations

    Fundam. Prikl. Mat., 5:2 (1999),  385–409
  15. Existence, local uniqueness, and asymptotics of two-dimensional periodic steplike contrast structures

    Zh. Vychisl. Mat. Mat. Fiz., 39:5 (1999),  812–831


© Steklov Math. Inst. of RAS, 2026