RUS  ENG
Full version
PEOPLE

Pazyuk Vladimir Semenovich

Publications in Math-Net.Ru

  1. Особенности генерации резонансной дисперсионной волны УФ диапазона в полом волноводе

    Pis'ma v Zh. Èksper. Teoret. Fiz., 122:8 (2025),  461–466
  2. Generation and temporal compression of second harmonic pulses of spectrally broadened radiation of a femtosecond ytterbium laser

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 51:21 (2025),  30–33
  3. Increasing the brightness of a femtosecond laser system via two-stage nonlinear conversion

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 51:3 (2025),  50–53
  4. SRS of ultrashort laser pulses with nonlinear phase modulation

    Kvantovaya Elektronika, 51:3 (2021),  217–221
  5. SRS converter – compressor of femtosecond ytterbium laser pulses

    Kvantovaya Elektronika, 49:9 (2019),  845–849
  6. Compressor of femtosecond laser pulses based on supercritical xenon

    Kvantovaya Elektronika, 48:7 (2018),  621–624
  7. Minimum possible laser pulse duration for SRS

    Kvantovaya Elektronika, 47:7 (2017),  593–596
  8. Femtosecond compressed-nitrogen Raman laser

    Kvantovaya Elektronika, 47:1 (2017),  1–4
  9. Temporal compression of pulses from a 100-KHz-repetiton-rate femtosecond ytterbium laser

    Kvantovaya Elektronika, 46:8 (2016),  675–678
  10. 1-kHz-repetition-rate femtosecond Raman laser

    Kvantovaya Elektronika, 46:7 (2016),  581–585
  11. 40-fs hydrogen Raman laser

    Kvantovaya Elektronika, 45:12 (2015),  1101–1104
  12. Direct detection of singlet oxygen O2(a1 Δg) by absorption at the a1 Δgb1 Σg+ transition using intracavity laser spectroscopy

    Kvantovaya Elektronika, 31:4 (2001),  363–366
  13. Pulsed chemical oxygen–iodine laser with bulk formation of iodine atoms by an electric discharge

    Kvantovaya Elektronika, 22:8 (1995),  776–778
  14. Numerical modelling of the process of energy extraction from a mixture of singlet oxygen and iodine in amplification of a short pulse

    Kvantovaya Elektronika, 22:2 (1995),  113–116
  15. Intracavity second harmonic generation in a pulsed oxygen–iodine chemical laser

    Kvantovaya Elektronika, 19:4 (1992),  407–409
  16. Influence of molecular chlorine on the output energy of a pulsed oxygen–iodine chemical laser

    Kvantovaya Elektronika, 18:7 (1991),  840–843
  17. Influence of an iodine donor on the output energy of a pulsed oxygen-iodine laser

    Kvantovaya Elektronika, 18:1 (1991),  33–37
  18. Influence of chlorine on the energy stored in the active medium of a pulsed oxygen-iodine chemical laser

    Kvantovaya Elektronika, 15:9 (1988),  1785–1790
  19. Influence of water vapor on the output energy of a pulsed oxygen-iodine laser

    Kvantovaya Elektronika, 13:5 (1986),  1068–1069
  20. Molecules of CH3I and n-C3F7I as iodine atom donors in a pulsed chemical oxygeniodine laser

    Kvantovaya Elektronika, 11:10 (1984),  1893–1894
  21. Chemical oxygen-iodine laser utilizing low-strength hydrogen peroxide

    Kvantovaya Elektronika, 11:8 (1984),  1688–1689
  22. Investigation of a flashlamp-initiated large-volume chemical $H_2-F_2$ laser

    Kvantovaya Elektronika, 7:8 (1980),  1821–1823
  23. Investigation of the efficiency of lamp sources for photoinitiation of pulsed hydrogen fluoride lasers

    Kvantovaya Elektronika, 6:10 (1979),  2277–2279


© Steklov Math. Inst. of RAS, 2026