|
|
Publications in Math-Net.Ru
-
Borsuk–Ulam type spaces
Mosc. Math. J., 15:4 (2015), 749–766
-
On the Cohen–Lusk theorem
Fundam. Prikl. Mat., 13:8 (2007), 61–67
-
Brouwer, Kakutani, and Borsuk–Ulam theorems
Mat. Zametki, 79:3 (2006), 471–473
-
The genus of $G$-spaces and topological lower bounds for chromatic numbers of hypergraphs
Fundam. Prikl. Mat., 11:4 (2005), 33–48
-
Coincidence points of maps of $\mathbb Z_p^n$-spaces
Izv. RAN. Ser. Mat., 69:5 (2005), 53–106
-
Antipodes and embeddings
Mat. Sb., 196:1 (2005), 3–32
-
Coincidence points of functions from $\mathbb Z_p^k$-spaces to $CW$-complexes
Uspekhi Mat. Nauk, 57:1(343) (2002), 153–154
-
Equivariant Maps and Some Problems of the Geometry of Convex Sets
Trudy Mat. Inst. Steklova, 239 (2002), 83–97
-
On a Property of Functions on the Sphere
Mat. Zametki, 70:5 (2001), 679–690
-
On the index of $G$-spaces
Mat. Sb., 191:9 (2000), 3–22
-
On the van Kampen–Flores theorem
Mat. Zametki, 59:5 (1996), 663–670
-
On a topological generalization of the Tverberg theorem
Mat. Zametki, 59:3 (1996), 454–456
-
On fibre $G$ -maps
Uspekhi Mat. Nauk, 51:3(309) (1996), 189–190
-
Equivariant multivalues maps
Uspekhi Mat. Nauk, 49:4(298) (1994), 159–160
-
On maps of Stiefel manifolds with a free $\mathbb Z_p^N$-action in the manifold
Uspekhi Mat. Nauk, 47:6(288) (1992), 205–206
-
A theorem of Bourgin–Yang type for $\mathbb{Z}_p^n$-action
Mat. Sb., 183:7 (1992), 115–144
-
The Vietoris–Begle theorem
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1984, no. 3, 70–71
-
Mappings of free $\mathbf Z_p$-spaces into manifolds
Izv. Akad. Nauk SSSR Ser. Mat., 46:1 (1982), 36–55
-
On the Bourgin–Yang theorem
Uspekhi Mat. Nauk, 35:3(213) (1980), 159–162
-
Two theorems from the theory of periodic transformations
Mat. Sb. (N.S.), 110(152):1(9) (1979), 128–134
-
A generalization of the Borsuk–Ulam theorem
Mat. Sb. (N.S.), 108(150):2 (1979), 212–218
© , 2026