RUS  ENG
Full version
PEOPLE

Volovikov Aleksei Yur'evich

Publications in Math-Net.Ru

  1. Borsuk–Ulam type spaces

    Mosc. Math. J., 15:4 (2015),  749–766
  2. On the Cohen–Lusk theorem

    Fundam. Prikl. Mat., 13:8 (2007),  61–67
  3. Brouwer, Kakutani, and Borsuk–Ulam theorems

    Mat. Zametki, 79:3 (2006),  471–473
  4. The genus of $G$-spaces and topological lower bounds for chromatic numbers of hypergraphs

    Fundam. Prikl. Mat., 11:4 (2005),  33–48
  5. Coincidence points of maps of $\mathbb Z_p^n$-spaces

    Izv. RAN. Ser. Mat., 69:5 (2005),  53–106
  6. Antipodes and embeddings

    Mat. Sb., 196:1 (2005),  3–32
  7. Coincidence points of functions from $\mathbb Z_p^k$-spaces to $CW$-complexes

    Uspekhi Mat. Nauk, 57:1(343) (2002),  153–154
  8. Equivariant Maps and Some Problems of the Geometry of Convex Sets

    Trudy Mat. Inst. Steklova, 239 (2002),  83–97
  9. On a Property of Functions on the Sphere

    Mat. Zametki, 70:5 (2001),  679–690
  10. On the index of $G$-spaces

    Mat. Sb., 191:9 (2000),  3–22
  11. On the van Kampen–Flores theorem

    Mat. Zametki, 59:5 (1996),  663–670
  12. On a topological generalization of the Tverberg theorem

    Mat. Zametki, 59:3 (1996),  454–456
  13. On fibre $G$ -maps

    Uspekhi Mat. Nauk, 51:3(309) (1996),  189–190
  14. Equivariant multivalues maps

    Uspekhi Mat. Nauk, 49:4(298) (1994),  159–160
  15. On maps of Stiefel manifolds with a free $\mathbb Z_p^N$-action in the manifold

    Uspekhi Mat. Nauk, 47:6(288) (1992),  205–206
  16. A theorem of Bourgin–Yang type for $\mathbb{Z}_p^n$-action

    Mat. Sb., 183:7 (1992),  115–144
  17. The Vietoris–Begle theorem

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1984, no. 3,  70–71
  18. Mappings of free $\mathbf Z_p$-spaces into manifolds

    Izv. Akad. Nauk SSSR Ser. Mat., 46:1 (1982),  36–55
  19. On the Bourgin–Yang theorem

    Uspekhi Mat. Nauk, 35:3(213) (1980),  159–162
  20. Two theorems from the theory of periodic transformations

    Mat. Sb. (N.S.), 110(152):1(9) (1979),  128–134
  21. A generalization of the Borsuk–Ulam theorem

    Mat. Sb. (N.S.), 108(150):2 (1979),  212–218


© Steklov Math. Inst. of RAS, 2026