RUS  ENG
Full version
PEOPLE

Melnikov Nikolai Borisovich

Publications in Math-Net.Ru

  1. Chattering extremals in Hamiltonian systems with control in a square

    Uspekhi Mat. Nauk, 81:1(487) (2026),  209–210
  2. Chattering trajectories in stabilization problems for nonlinear control-affine systems.

    Trudy Inst. Mat. i Mekh. UrO RAN, 31:1 (2025),  138–153
  3. Asymptotic formulas for magnetization and chemical potential of ferromagnetic metals at low temperatures

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 235 (2024),  78–86
  4. Treatment of symmetry in the Ritz method for the Schrödinger equation in crystals with a basis

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 231 (2024),  74–82
  5. Chattering extremals in control-affine stabilization problems

    Uspekhi Mat. Nauk, 79:5(479) (2024),  187–188
  6. Projection Method for Infinite-Horizon Economic Growth Problems

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:3 (2022),  17–29
  7. Numerical continuation method for nonlinear system of scalar and functional equations

    Zh. Vychisl. Mat. Mat. Fiz., 60:3 (2020),  405–412
  8. Effect of phonons on the magnetic characteristics of metals at finite temperatures

    TMF, 201:1 (2019),  137–148
  9. Debye–Waller factor in neutron scattering by ferromagnetic metals

    TMF, 195:1 (2018),  91–104
  10. Spin–density correlations and magnetic neutron scattering in ferromagnetic metals

    TMF, 191:1 (2017),  151–171
  11. Parallel algorithm for calculating general equilibrium in multiregion economic growth models

    Ural Math. J., 2:2 (2016),  45–57
  12. Spin-density correlator and its Fourier transform in the dynamic spin-fluctuation theory

    Num. Meth. Prog., 17:4 (2016),  474–486
  13. Magnetic phase transitions in spin-fluctuation theory

    TMF, 183:3 (2015),  486–497
  14. Transverse susceptibility and the $T^{3/2}$ law in the dynamic spin-fluctuation theory

    TMF, 181:2 (2014),  358–373
  15. A renormalized Gaussian approximation in the spin-fluctuation theory

    Num. Meth. Prog., 15:3 (2014),  461–475
  16. Optimal Gaussian approximation in the Ising model

    Num. Meth. Prog., 13:3 (2012),  452–464
  17. Accounting for household heterogeneity in dynamic general equilibrium models

    UBS, 35 (2011),  114–135
  18. Accounting for household heterogeneity in dynamic general equilibrium models

    Mat. Teor. Igr Pril., 2:4 (2010),  52–73
  19. Consumer aggregation in dynamic general equlibrium models with CES utility functions

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:5 (2010),  289–296
  20. Optimal Gaussian approximation in the fluctuating field theory

    Trudy Mat. Inst. Steklova, 271 (2010),  159–180
  21. Непрерывная деформация модели экономического роста с перекрывающимися поколениями к модели Рамсея

    Matem. Mod. Kraev. Zadachi, 2 (2009),  107–110
  22. Andronov–Hopf bifurcation in simple double diffusion models

    Uspekhi Mat. Nauk, 62:2(374) (2007),  175–176
  23. Soft Loss of Stability in an Ocean Circulation Box Model with Turbulent Fluxes

    Trudy Mat. Inst. Steklova, 259 (2007),  10–19
  24. Optimality of Singular Curves in the Problem on a Car with $n$ Trailers

    CMFD, 19 (2006),  114–130
  25. The Bellman function and optimal synthesis in control problems with nonsmooth constraints

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 110 (2006),  134–154
  26. Extremal properties of singularities of Goursat distributions

    Uspekhi Mat. Nauk, 61:4(370) (2006),  191–192
  27. A Saddle Point in a Differential Game on an Unbounded Time Interval

    Trudy Mat. Inst. Steklova, 236 (2002),  230–233
  28. The Topological Structure of the Phase Portrait of a Typical Fiber of Optimal Synthesis for Chattering Problems

    Trudy Mat. Inst. Steklova, 233 (2001),  125–152
  29. On the problem of control synthesis: the Pontryagin alternating integral and the Hamilton–Jacobi equation

    Mat. Sb., 191:6 (2000),  69–100


© Steklov Math. Inst. of RAS, 2026