|
|
Publications in Math-Net.Ru
-
On the separation property of the Sturm–Liouville operator in weighted spaces of multiplicators
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 141 (2017), 86–94
-
Oscillatory and nonoscillatory conditions for a second-order half-linear differential equation
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 139 (2017), 39–43
-
On the Boundedness of the Schrödinger Operator in Weighted Sobolev Spaces
Mat. Zametki, 99:6 (2016), 945–949
-
Asymptotics of Eigenvalues of a Second-Order Non-Self-Adjoint Differential Operator on the Axis
Mat. Zametki, 93:4 (2013), 630–633
-
On oscillation of two terms linear differential equation with alternating potential
Eurasian Math. J., 3:2 (2012), 135–140
-
Multipliers in weighted Sobolev spaces
Mat. Sb., 196:8 (2005), 21–48
-
Embedding the weighted Sobolev space $W^l_p(\Omega;v)$ in the space $L_p(\Omega;\omega)$
Mat. Sb., 191:2 (2000), 132–148
-
Embedding theorems for anisotropic weighted spaces of Sobolev type. II
Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 2, 36–45
-
Embedding theorems for anisotropic [weighted] spaces of Sobolev type. I
Izv. Vyssh. Uchebn. Zaved. Mat., 1987, no. 11, 20–31
-
On imbedding and compactness theorems for anisotropic weighted Sobolev spaces
Dokl. Akad. Nauk SSSR, 263:5 (1982), 1050–1053
-
Estimates of diameters of the unit sphere of the function space $\mathring{L}^l_p(\Omega,v)$ in $L_q(\Omega)$
Dokl. Akad. Nauk SSSR, 251:4 (1980), 791–794
© , 2026