RUS  ENG
Full version
PEOPLE

Golubev Vladimir Sergeevich

Publications in Math-Net.Ru

  1. Turbulent structure of the active medium of a fast-flow CO2 laser

    Kvantovaya Elektronika, 33:8 (2003),  671–676
  2. A study of the turbulent characteristics of thermodynamicaliy nonequilibrium flow of molecular gas

    TVT, 37:5 (1999),  707–715
  3. Damage to the surface of silicon in the solid phase by the action of Nd:YAG laser pulses

    Kvantovaya Elektronika, 25:10 (1998),  941–944
  4. Optical inhomogeneities of the active media of high-power industrial CO2 lasers with fast axial flow

    Kvantovaya Elektronika, 24:3 (1997),  223–226
  5. Influence of an external pressure and of the type of gas on the mechanism and rate of breakdown of metals by Nd:YAG laser pulses

    Kvantovaya Elektronika, 23:11 (1996),  1029–1032
  6. Spectroscopic investigation of thermodynamic parameters of a plasma plume formed by the action of cw CO2 laser radiation on a metal substrate

    Kvantovaya Elektronika, 23:9 (1996),  831–834
  7. Influence of a radial inhomogeneity of the active medium on the output radiation power from a cw CO2 laser with fast axial flow

    Kvantovaya Elektronika, 23:8 (1996),  695–698
  8. Amplification and nonlinear losses in a cw CO2 laser with fast axial flow

    Kvantovaya Elektronika, 23:6 (1996),  544–548
  9. Influence of turbulent diffusion on the amplification of radiation in a sectioned discharge chamber of a fast-flow CO2-laser

    Kvantovaya Elektronika, 22:5 (1995),  485–487
  10. Computational and theoretical investigation of the positive column of glow discharge in a sealed-off $\mathrm{CO}_2$ laser

    TVT, 31:6 (1993),  875–880
  11. Industrial lasers developed at the Scientific-Research Center for Industrial Lasers of the USSR Academy of Sciences

    Kvantovaya Elektronika, 17:6 (1990),  672–677
  12. Investigation of the energy characteristics of a cw gas-flow electric-discharge CO2 amplifier

    Kvantovaya Elektronika, 14:2 (1987),  410–413
  13. Operation of a high-power industrial CO2 laser under conditions of amplification of pulse-periodic radiation

    Kvantovaya Elektronika, 13:8 (1986),  1720–1722
  14. Stability of the emission from fast-flow gas discharge industrial CO2 lasers (review)

    Kvantovaya Elektronika, 12:4 (1985),  663–671
  15. On the possibility of obtaining the nitrogen oscillatory temperature break-off in decaying plasma under high pressure

    Dokl. Akad. Nauk SSSR, 269:4 (1983),  843–845
  16. Investigation of the parameters of discharges in nitrogen and air intended for fast-flow CO2 lasers

    Kvantovaya Elektronika, 10:8 (1983),  1686–1688
  17. Glow discharge in a gas flow

    UFN, 137:1 (1982),  117–150
  18. Promising systems and methods for pumping high-power technological CO2 lasers (review)

    Kvantovaya Elektronika, 8:12 (1981),  2517–2539
  19. High-power multibeam CO2 laser excited by an ac discharge

    Kvantovaya Elektronika, 8:10 (1981),  2234–2237
  20. Ionisation-thermal breakdown of air at the surface of metals irradiated by $\mathrm{CO}_2$ laser

    Dokl. Akad. Nauk SSSR, 253:4 (1980),  867–871
  21. Prospects for using an ac discharge for pumping fast-flow closed-cycle CO<sub>2</sub> processing lasers

    Kvantovaya Elektronika, 7:4 (1980),  775–780
  22. Theoretical and Experimental Study of a Capacitative Arc Discharge at Medium Pressures

    TVT, 18:3 (1980),  483–488
  23. Characteristics of a CO2 laser excited by a capacitative ac discharge

    Kvantovaya Elektronika, 6:3 (1979),  548–552
  24. Optimization of technological closed-cycle CO2 laser to 10 kW power

    Kvantovaya Elektronika, 6:1 (1979),  204–209
  25. Устойчивость разряда переменного тока в присутствии электроотрицательных газов (№ 3557–78 Деп. от 27 XI 1978)

    TVT, 17:1 (1979),  220
  26. Механизм протекания переменного тока в молекулярном газе

    TVT, 16:2 (1978),  265–267
  27. Plasma formation when CO2 laser radiation passes through transparent dielectrics

    Kvantovaya Elektronika, 4:10 (1977),  2120–2124
  28. Investigation of the efficiency of pumping of fast-flow CO2 lasers by an alternating-current discharge

    Kvantovaya Elektronika, 4:9 (1977),  2034–2036
  29. Shock tube for investigations of high-temperature MHD generators

    TVT, 14:2 (1976),  353–358
  30. Investigation of a high-efficiency MHD generator with nonequilibrium conductivity

    TVT, 13:5 (1975),  1064–1071
  31. Ionization wave of a glow discharge in a turbulent air flow

    TVT, 13:3 (1975),  650–652
  32. Dependence of the Hall effect in a nonequilibrium plasma on the electron density

    TVT, 13:1 (1975),  189–191
  33. Волна ионизации в турбулентном потоке газа

    TVT, 12:5 (1974),  947–951
  34. Особенности акустической неустойчивости низкотемпературной плазмы в ограниченных объемах

    TVT, 12:2 (1974),  259–266
  35. Сверхзвуковой МГД-генератор большой эффективности на неравновесной плазме

    TVT, 11:6 (1973),  1289–1291
  36. Исследования неоднородностей плазмы между коаксиальными электродами в магнитном поле

    TVT, 11:2 (1973),  245–250
  37. Влияние вязкости на движение неоднородностей неравновесной плазмы в магнитном поле

    TVT, 10:4 (1972),  882–884
  38. Влияние границ на ионизационную неустойчивость плазмы в разряде коаксиальной геометрии

    TVT, 10:3 (1972),  469–474
  39. Исследование колебании неравновесной плазмы малой плотности в магнитном поле

    TVT, 9:6 (1971),  1113–1118
  40. Pulsed model of a magnetohydrodynamic generator having a strongly nonequilibrium plasma

    TVT, 8:6 (1970),  1265–1273
  41. Исследование стационарной аргоно-цезиевой плазмы с неравновесной проводимостью

    TVT, 2:4 (1964),  493–509

  42. New book on laser technology: V. P. Veĭko, Laser Processing of Film Components [in Russian], Mashinostroenie, Leningrad (1986)

    Kvantovaya Elektronika, 14:2 (1987),  431–432


© Steklov Math. Inst. of RAS, 2026