RUS  ENG
Full version
PEOPLE

Shvedov Oleg Yurievich

Publications in Math-Net.Ru

  1. On Function Spaces for Quantum Systems with Constraints

    Mat. Zametki, 100:4 (2016),  597–618
  2. Maslov complex germ method for systems with second-class constraints

    TMF, 186:3 (2016),  423–432
  3. On Fock Spaces with Linear Constraints

    Mat. Zametki, 78:1 (2005),  151–156
  4. Relativistically Covariant Quantum Field Theory of the Maslov Complex Germ

    TMF, 144:3 (2005),  492–512
  5. On Quasiclassical Field Theories Invariant with Respect to a Lie Group

    Mat. Zametki, 73:3 (2003),  474–477
  6. Maslov Complex Germ Method for Systems with First-Class Constraints

    TMF, 136:3 (2003),  418–435
  7. Renormalization of Lee-type models in spaces of arbitrary dimension

    Mat. Zametki, 68:1 (2000),  154–156
  8. The Complex-Germ Method for Statistical Mechanics of Model Systems

    Trudy Mat. Inst. Steklova, 228 (2000),  246–263
  9. Exactly solvable quantum mechanical models with Stückelberg divergences

    TMF, 125:1 (2000),  91–106
  10. On the canonical Maslov operator in abstract spaces

    Mat. Zametki, 65:3 (1999),  437–456
  11. Asymptotics of the density matrix of a system of a large number of identical particles

    Mat. Zametki, 65:1 (1999),  84–106
  12. Complex Maslov germs in abstract spaces

    Mat. Sb., 190:10 (1999),  123–157
  13. On the Elimination of the Stueckelberg Divergences in the Hamiltonian Field Theory

    Trudy Mat. Inst. Steklova, 226 (1999),  112–133
  14. Maslov's complex germ and the asymptotic formula for the Gibbs canonical distribution

    Mat. Zametki, 64:4 (1998),  622–636
  15. Axioms of quantum field theory with ultraviolet truncation

    Mat. Zametki, 63:1 (1998),  147–150
  16. Initial conditions in quasi-classical field theory

    TMF, 114:2 (1998),  233–249
  17. On some identities for the asymptotic behaviors of solutions of abstract equations

    Dokl. Akad. Nauk, 352:2 (1997),  167–171
  18. On the asymptotics of the spectrum of the Hamiltonian of quantum theory for a large number of fields

    Dokl. Akad. Nauk, 352:1 (1997),  36–40
  19. The number of bose-condensed particles in a weakly nonideal bose gas

    Mat. Zametki, 61:5 (1997),  790–792
  20. Spectral problems with an operator-valued symbol in quantum field theory

    Dokl. Akad. Nauk, 350:3 (1996),  312–314
  21. Asymptotic behavior of solutions of equations with an operator-valued symbol in problems of quantum field theory

    Dokl. Akad. Nauk, 349:4 (1996),  455–459
  22. Approximate nonsymmetric solutions of many-particle equations and some identities for the density matrix

    Mat. Zametki, 60:3 (1996),  463–467
  23. Tunnel asymptotics in second quantized systems

    Dokl. Akad. Nauk, 341:1 (1995),  32–36
  24. The complex WKB method in the Fock space

    Dokl. Akad. Nauk, 340:1 (1995),  42–47
  25. Stationary asymptotic solutions of the many body problem and the derivation of integral equations with a jumping nonlinearity

    Differ. Uravn., 31:2 (1995),  312–326
  26. Large deviations in the many-body problem

    Mat. Zametki, 57:1 (1995),  133–137
  27. Complex germ method in the Fock space. II. Asymptotics, corresponding to finite-dimensional isotropic manifolds

    TMF, 104:3 (1995),  479–506
  28. Complex germ method in the Fock space. I. Asymptotics like wave packets

    TMF, 104:2 (1995),  310–329
  29. On a new asymptotic method in the problem of many classical particles

    Dokl. Akad. Nauk, 338:2 (1994),  173–176
  30. The problem of chaos conservation in many-particle systems

    Dokl. Akad. Nauk, 338:1 (1994),  15–18
  31. The spectrum of an $N$-particle Hamiltonian for large $N$, and superfluidity

    Dokl. Akad. Nauk, 335:1 (1994),  42–46
  32. Asymptotics of a solution of an $N$-partial Liouville equation for large $N$ and refutation of the chaos hypothesis for density functions

    Mat. Zametki, 56:2 (1994),  153–155
  33. Quantization in the neighborhood of classical solutions in the $N$ particle problem and superfluidity

    TMF, 98:2 (1994),  266–288
  34. Semiclassical asymptotics of a model problem

    Mat. Zametki, 53:5 (1993),  14–20

  35. Московская физическая олимпиада 2015 года

    Kvant, 2015, no. 4,  46–51
  36. Избранные задачи Московской физической олимпиады

    Kvant, 2014, no. 4,  46–51
  37. Избранные задачи Московской физической олимпиады

    Kvant, 2013, no. 4,  46–50
  38. Избранные задачи Московской физической олимпиады

    Kvant, 2012, no. 4,  52–56
  39. Избранные задачи Московской физической олимпиады

    Kvant, 2011, no. 4,  58–61
  40. Избранные задачи Московской физической олимпиады

    Kvant, 2009, no. 4,  52–54


© Steklov Math. Inst. of RAS, 2026