RUS  ENG
Full version
PEOPLE

Petrov Evgenii Evgen'evich

Publications in Math-Net.Ru

  1. Paley–Wiener theorems for the matrix Radon transform

    Mat. Sb., 190:8 (1999),  103–124
  2. Spherical functions on a finite affine space with a series of Zelevinsky subgroups

    Mat. Zametki, 57:3 (1995),  434–444
  3. The Cavalieri condition for integrals over $k$-dimensional planes, $k<n-1$

    Algebra i Analiz, 5:4 (1993),  191–205
  4. Moment conditions for the $k$-dimensional Radon transformation

    Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 4,  49–53
  5. Residues of the generalized function $|\det x|^\lambda\operatorname{sgn}^\nu(\det x)$

    Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 3,  83–86
  6. Cavalieri conditions for a $k$-dimensional radon transformation

    Mat. Zametki, 50:5 (1991),  61–68
  7. Harmonics on a finite projective space

    Mat. Zametki, 43:1 (1988),  31–37
  8. Fundamental harmonics on a $p$-adic circle

    Izv. Vyssh. Uchebn. Zaved. Mat., 1987, no. 5,  63–70
  9. The discrete series of representations of the group $SL(2,F_{2^n})$

    Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 6,  18–21
  10. Harmonic analysis on the $\mathfrak P$-adic sphere

    Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 11,  80–82
  11. The principal series of representations of the group $SL(2A)$ over a finite local commutative principal ideal ring $A$

    Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 9,  83–86
  12. Classes of conjugate elements of the group $Sl(2,Z/p^{\lambda}Z)$, $p\neq 2$

    Izv. Vyssh. Uchebn. Zaved. Mat., 1980, no. 8,  85–88
  13. Harmonic analysis on a finite sphere

    Izv. Vyssh. Uchebn. Zaved. Mat., 1980, no. 6,  80–82
  14. A Paley–Wiener theorem for a Radon complex

    Izv. Vyssh. Uchebn. Zaved. Mat., 1977, no. 3,  66–77
  15. Homogeneous generalized functions in local fields

    Izv. Vyssh. Uchebn. Zaved. Mat., 1976, no. 10,  109–112
  16. The Radon transform in matrix spaces and in Grassmann manifolds

    Dokl. Akad. Nauk SSSR, 177:4 (1967),  782–785


© Steklov Math. Inst. of RAS, 2026