RUS  ENG
Full version
PEOPLE

Petrushko Igor Meletievich

Publications in Math-Net.Ru

  1. On the first mixed problem for degenerate parabolic equations in stellar domains with Lyapunov boundary in Banach spaces

    Mathematical notes of NEFU, 30:1 (2023),  21–39
  2. On the mixed problem $E$ for second-order parabolic equations degenerating on the boundary of a domain

    Mathematical notes of NEFU, 26:3 (2019),  57–70
  3. On the first mixed problem in banach spaces for the degenerate parabolic equations with changing time direction

    Mathematical notes of NEFU, 25:4 (2018),  45–59
  4. On the basics of common theory for coordination polyhedron composition (polyhedron fundamental equations)

    Mathematical notes of NEFU, 24:3 (2017),  3–11
  5. On the first problem for the degenerate parabolic equations with changing time direction

    Mathematical notes of NEFU, 23:1 (2016),  67–78
  6. Existence of boundary values for solutions of degenerate elliptic equations

    Mat. Sb., 190:7 (1999),  41–72
  7. Boundary values of solutions of second-order parabolic equations that are degenerate on the boundary of the domain

    Dokl. Akad. Nauk SSSR, 316:3 (1991),  550–553
  8. On boundary values of solutions of elliptic equations degenerating on the boundary

    Mat. Sb. (N.S.), 136(178):2(6) (1988),  241–259
  9. Boundary values of solutions of second-order elliptic equations that are degenerate on the boundary of the domain

    Dokl. Akad. Nauk SSSR, 284:5 (1985),  1069–1073
  10. On boundary and initial conditions in $\mathscr L_p$, $p>1$, of solutions of parabolic equations

    Mat. Sb. (N.S.), 125(167):4(12) (1984),  489–521
  11. On boundary values in $\mathscr L_p$, $p>1$, of solutions of elliptic equations in domains with a Lyapunov boundary

    Mat. Sb. (N.S.), 120(162):4 (1983),  569–588
  12. On boundary and initial values in $\mathcal{L}_p$, $p>1$, of solutions of second order parabolic equations

    Dokl. Akad. Nauk SSSR, 267:5 (1982),  1063–1066
  13. On boundary and initial values of solutions of second order parabolic equations

    Dokl. Akad. Nauk SSSR, 266:3 (1982),  557–560
  14. On boundary values of solutions of elliptic equations in domains with Lyapunov boundary

    Mat. Sb. (N.S.), 119(161):1(9) (1982),  48–77
  15. On boundary values in $\mathcal{L}_p$ , $p>1$ of solutions of parabolic equations

    Dokl. Akad. Nauk SSSR, 251:5 (1980),  1067–1069
  16. On the first mixed problem for parabolic equations of second order

    Dokl. Akad. Nauk SSSR, 248:2 (1979),  294–298
  17. On the boundary and initial values of solutions of parabolic equations

    Mat. Sb. (N.S.), 106(148):3(7) (1978),  409–439
  18. On the boundary values of solutions of parabolic equations

    Mat. Sb. (N.S.), 103(145):3(7) (1977),  404–429
  19. The Fredholmicity of certain boundary value problems for the equation $u_{xx}+yu_{yy}+\alpha(x,y)u_y+\beta(x,y)u_x+\gamma(x,y)u=f(x,y)$ in a mixed domain

    Differ. Uravn., 4:1 (1968),  123–135
  20. Boundary value problems for equations of mixed type

    Trudy Mat. Inst. Steklov., 103 (1968),  181–200
  21. Nonuniqueness of the Cauchy problem for a parabolic equation

    Trudy Mat. Inst. Steklov., 91 (1967),  132–145


© Steklov Math. Inst. of RAS, 2026