RUS  ENG
Full version
PEOPLE

Mukhamedov Farrukh Maksutovich

Publications in Math-Net.Ru

  1. Bijective class of replicator equations

    Mat. Zametki, 116:5 (2024),  1072–1079
  2. The $p$-adic Ising model in an external field on a Cayley tree: periodic Gibbs measures

    TMF, 216:2 (2023),  383–400
  3. Extremality of translation-invariant Gibbs measures for the $\lambda$-model on the binary Cayley tree

    TMF, 210:3 (2022),  470–484
  4. Quantum Markov Chains on Comb Graphs: Ising Model

    Trudy Mat. Inst. Steklova, 313 (2021),  192–207
  5. Characterization of Bistochastic Kadison–Schwarz Operators on $M_2(\mathbb C)$

    Trudy Mat. Inst. Steklova, 313 (2021),  178–191
  6. $p$-adic monomial equations and their perturbations

    Izv. RAN. Ser. Mat., 84:2 (2020),  152–165
  7. Open Quantum Random Walks and Quantum Markov Chains

    Funktsional. Anal. i Prilozhen., 53:2 (2019),  72–78
  8. On Nonergodic Uniform Lotka–Volterra Operators

    Mat. Zametki, 105:2 (2019),  258–264
  9. Ground states and phase transition of the $\lambda$ model on the Cayley tree

    TMF, 194:2 (2018),  304–319
  10. On the uniform zero-two law for positive contractions of Jordan algebras

    Eurasian Math. J., 8:4 (2017),  55–62
  11. Ergodicity Coefficient and Ergodic Properties of Inhomogeneous Markov Chains in Ordered Normed Spaces with a Base

    Mat. Zametki, 99:3 (2016),  477–480
  12. Translation-invariant $p$-adic quasi-Gibbs measures for the Ising–Vannimenus model on a Cayley tree

    TMF, 187:1 (2016),  155–176
  13. On the Existence of Phase Transition for the 1D $p$-Adic Countable State Potts Model

    Mat. Zametki, 98:2 (2015),  283–288
  14. Solvability of cubic equations in $p$-adic integers ($p>3$)

    Sibirsk. Mat. Zh., 54:3 (2013),  637–654
  15. The $p$-adic Potts model on the Cayley tree of order three

    TMF, 176:3 (2013),  513–528
  16. A polynomial $p$-adic dynamical system

    TMF, 170:3 (2012),  448–456
  17. Uniqueness of Quantum Markov Chains Associated with an $XY$-Model on a Cayley Tree of Order $2$

    Mat. Zametki, 90:2 (2011),  168–182
  18. On the Existence of Generalized Gibbs Measures for the One-Dimensional $p$-adic Countable State Potts Model

    Trudy Mat. Inst. Steklova, 265 (2009),  177–188
  19. On the Chaotic Behavior of Cubic $p$-Adic Dynamical Systems

    Mat. Zametki, 83:3 (2008),  468–471
  20. On Strictly Weakly Mixing $C^*$-Dynamical Systems

    Funktsional. Anal. i Prilozhen., 41:4 (2007),  79–82
  21. On expansion of quantum quadratic stochastic processes into fibrewise Markov processes defined on von Neumann algebras

    Izv. RAN. Ser. Mat., 68:5 (2004),  171–188
  22. Some Properties of a Class of Diagonalizable States of von Neumann Algebras

    Mat. Zametki, 76:3 (2004),  350–361
  23. An individual ergodic theorem with respect to a uniform sequence and the Banach principle in Jordan algebras

    Mat. Sb., 194:2 (2003),  73–86
  24. On the ergodic principle for Markov processes associated with quantum quadratic stochastic processes

    Uspekhi Mat. Nauk, 57:6(348) (2002),  193–194
  25. $\mathbb {Z}$Existence of a Phase Transition for the Potts $p$-adic Model on the Set $\mathbb {Z}$

    TMF, 130:3 (2002),  500–507
  26. Von Neumann algebra corresponding to one phase of the inhomogeneous Potts model on a Cayley tree

    TMF, 126:2 (2001),  206–213
  27. Ergodic properties of discrete quadratic stochastic processes defined on von Neumann algebras

    Izv. RAN. Ser. Mat., 64:5 (2000),  3–20
  28. On the Blum–Hanson theorem for quantum quadratic processes

    Mat. Zametki, 67:1 (2000),  102–109
  29. Infinite-dimensional quadratic Volterra operators

    Uspekhi Mat. Nauk, 55:6(336) (2000),  149–150
  30. On uniform ergodic theorems for quadratic processes on $C^*$-algebras

    Mat. Sb., 191:12 (2000),  141–152
  31. The disordered phase of the inhomogeneous Potts model is extremal on the Cayley tree

    TMF, 124:3 (2000),  410–418
  32. Von Neumann algebras generated by translation-invariant Gibbs states of the Ising model on a Bethe lattice

    TMF, 123:1 (2000),  88–93
  33. Ergodic properties of quantum quadratic stochastic processes defined on von Neumann algebras

    Uspekhi Mat. Nauk, 53:6(324) (1998),  243–244

  34. From differential equations to difference equations

    Math. Ed., 2023, no. 3(107),  38–47
  35. To the memory of Inomjon Gulomjonovich Ganiev

    Vladikavkaz. Mat. Zh., 20:1 (2018),  98–102


© Steklov Math. Inst. of RAS, 2026