|
|
Publications in Math-Net.Ru
-
Bijective class of replicator equations
Mat. Zametki, 116:5 (2024), 1072–1079
-
The $p$-adic Ising model in an external field on a Cayley tree: periodic Gibbs measures
TMF, 216:2 (2023), 383–400
-
Extremality of translation-invariant Gibbs measures for the $\lambda$-model on the binary Cayley tree
TMF, 210:3 (2022), 470–484
-
Quantum Markov Chains on Comb Graphs: Ising Model
Trudy Mat. Inst. Steklova, 313 (2021), 192–207
-
Characterization of Bistochastic Kadison–Schwarz Operators on $M_2(\mathbb C)$
Trudy Mat. Inst. Steklova, 313 (2021), 178–191
-
$p$-adic monomial equations and their perturbations
Izv. RAN. Ser. Mat., 84:2 (2020), 152–165
-
Open Quantum Random Walks and Quantum Markov Chains
Funktsional. Anal. i Prilozhen., 53:2 (2019), 72–78
-
On Nonergodic Uniform Lotka–Volterra Operators
Mat. Zametki, 105:2 (2019), 258–264
-
Ground states and phase transition of the $\lambda$ model on the Cayley tree
TMF, 194:2 (2018), 304–319
-
On the uniform zero-two law for positive contractions of Jordan algebras
Eurasian Math. J., 8:4 (2017), 55–62
-
Ergodicity Coefficient and Ergodic Properties of Inhomogeneous Markov Chains in Ordered Normed Spaces with a Base
Mat. Zametki, 99:3 (2016), 477–480
-
Translation-invariant $p$-adic quasi-Gibbs measures for the Ising–Vannimenus model on a Cayley tree
TMF, 187:1 (2016), 155–176
-
On the Existence of Phase Transition for the 1D $p$-Adic Countable State Potts Model
Mat. Zametki, 98:2 (2015), 283–288
-
Solvability of cubic equations in $p$-adic integers ($p>3$)
Sibirsk. Mat. Zh., 54:3 (2013), 637–654
-
The $p$-adic Potts model on the Cayley tree of order three
TMF, 176:3 (2013), 513–528
-
A polynomial $p$-adic dynamical system
TMF, 170:3 (2012), 448–456
-
Uniqueness of Quantum Markov Chains Associated with an $XY$-Model on a Cayley Tree of Order $2$
Mat. Zametki, 90:2 (2011), 168–182
-
On the Existence of Generalized Gibbs Measures for the One-Dimensional $p$-adic Countable State Potts Model
Trudy Mat. Inst. Steklova, 265 (2009), 177–188
-
On the Chaotic Behavior of Cubic $p$-Adic Dynamical Systems
Mat. Zametki, 83:3 (2008), 468–471
-
On Strictly Weakly Mixing $C^*$-Dynamical Systems
Funktsional. Anal. i Prilozhen., 41:4 (2007), 79–82
-
On expansion of quantum quadratic stochastic processes into fibrewise Markov processes defined on von Neumann algebras
Izv. RAN. Ser. Mat., 68:5 (2004), 171–188
-
Some Properties of a Class of Diagonalizable States of von Neumann Algebras
Mat. Zametki, 76:3 (2004), 350–361
-
An individual ergodic theorem with respect to a uniform
sequence and the Banach principle in Jordan algebras
Mat. Sb., 194:2 (2003), 73–86
-
On the ergodic principle for Markov processes associated with quantum quadratic stochastic processes
Uspekhi Mat. Nauk, 57:6(348) (2002), 193–194
-
$\mathbb {Z}$Existence of a Phase Transition for the Potts $p$-adic Model on the Set $\mathbb {Z}$
TMF, 130:3 (2002), 500–507
-
Von Neumann algebra corresponding to one phase of the inhomogeneous Potts model on a Cayley tree
TMF, 126:2 (2001), 206–213
-
Ergodic properties of discrete quadratic stochastic processes defined on von Neumann algebras
Izv. RAN. Ser. Mat., 64:5 (2000), 3–20
-
On the Blum–Hanson theorem for quantum quadratic processes
Mat. Zametki, 67:1 (2000), 102–109
-
Infinite-dimensional quadratic Volterra operators
Uspekhi Mat. Nauk, 55:6(336) (2000), 149–150
-
On uniform ergodic theorems for quadratic processes on $C^*$-algebras
Mat. Sb., 191:12 (2000), 141–152
-
The disordered phase of the inhomogeneous Potts model is extremal on the Cayley tree
TMF, 124:3 (2000), 410–418
-
Von Neumann algebras generated by translation-invariant Gibbs states of the Ising model on a Bethe lattice
TMF, 123:1 (2000), 88–93
-
Ergodic properties of quantum quadratic stochastic processes defined on von Neumann algebras
Uspekhi Mat. Nauk, 53:6(324) (1998), 243–244
-
From differential equations to difference equations
Math. Ed., 2023, no. 3(107), 38–47
-
To the memory of Inomjon Gulomjonovich Ganiev
Vladikavkaz. Mat. Zh., 20:1 (2018), 98–102
© , 2026