RUS  ENG
Full version
PEOPLE

Rozikov Utkir Abdulloyevich

Publications in Math-Net.Ru

  1. Discrete-Time Dynamical Systems Generated by a Quadratic Operator

    Rus. J. Nonlin. Dyn., 21:3 (2025),  399–418
  2. Dynamical systems of quadratic operators on set of idempotent measures

    Ufimsk. Mat. Zh., 17:3 (2025),  125–140
  3. Gibbs measures of bubble coalescence in an interacting system of DNA molecules for the Ising–SOS model on a Cayley tree

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 35:1 (2025),  96–116
  4. Dynamical Systems of an Infinite-Dimensional Nonlinear Operator on the Banach Space $l_1$

    Rus. J. Nonlin. Dyn., 20:4 (2024),  685–703
  5. Evolutionary Behavior in a Two-Locus System

    Rus. J. Nonlin. Dyn., 19:3 (2023),  297–302
  6. Fixed points of an infinite-dimensional operator related to Gibbs measures

    TMF, 214:2 (2023),  329–344
  7. Gibbs periodic measures for a two-state HC-model on a Cayley tree

    CMFD, 68:1 (2022),  95–109
  8. Dynamical System of a Quadratic Stochastic Operator with Two Discontinuity Points

    Mat. Zametki, 111:5 (2022),  663–675
  9. Gibbs measures for the HC Blume–Capel model with countably many states on a Cayley tree

    TMF, 211:3 (2022),  491–501
  10. Periodic Gibbs measures for the Potts model in translation-invariant and periodic external fields on the Cayley tree

    TMF, 210:1 (2022),  156–176
  11. Thermodynamics of interacting systems of DNA molecules

    TMF, 206:2 (2021),  199–209
  12. Extremality of the translation-invariant Gibbs measures for the Potts model on the Cayley tree

    TMF, 196:1 (2018),  117–134
  13. Construction of a set of $p$-adic distributions

    TMF, 193:2 (2017),  333–342
  14. Four competing interactions for models with an uncountable set of spin values on a Cayley tree

    TMF, 191:3 (2017),  503–517
  15. Free energies of the Potts model on a Cayley tree

    TMF, 190:1 (2017),  112–123
  16. Periodic Gibbs measures for the Potts model on the Cayley tree

    TMF, 175:2 (2013),  300–312
  17. $p$-Adic Gibbs measures and Markov random fields on countable graphs

    TMF, 175:1 (2013),  84–92
  18. The uniqueness condition for a weakly periodic Gibbs measure for the hard-core model

    TMF, 173:1 (2012),  60–70
  19. A polynomial $p$-adic dynamical system

    TMF, 170:3 (2012),  448–456
  20. Nonuniqueness of a Gibbs measure for a model on the Cayley tree

    TMF, 167:2 (2011),  311–322
  21. Description of $p$-harmonic functions on the Cayley tree

    TMF, 162:2 (2010),  266–274
  22. On $l$-Volterra quadratic stochastic operators

    Dokl. Akad. Nauk, 424:2 (2009),  168–170
  23. The dynamics of strictly non-Volterra quadratic stochastic operators on the 2-simplex

    Mat. Sb., 200:9 (2009),  81–94
  24. Weakly periodic ground states and Gibbs measures for the Ising model with competing interactions on the Cayley tree

    TMF, 160:3 (2009),  507–516
  25. $F$-Quadratic Stochastic Operators

    Mat. Zametki, 83:4 (2008),  606–612
  26. Fertile HC models with three states on a Cayley tree

    TMF, 156:3 (2008),  412–424
  27. Description of weakly periodic Gibbs measures for the Ising model on a Cayley tree

    TMF, 156:2 (2008),  292–302
  28. Potts model with competing interactions on the Cayley tree: The contour method

    TMF, 153:1 (2007),  86–97
  29. A description of harmonic functions via properties of the group representation of the Cayley tree

    Mat. Zametki, 79:3 (2006),  434–443
  30. On quadratic stochastic operators generated by Gibbs distributions

    Regul. Chaotic Dyn., 11:4 (2006),  467–473
  31. Gibbs measures for the SOS model with four states on a Cayley tree

    TMF, 149:1 (2006),  18–31
  32. Group representation of the Cayley forest and some of its applications

    Izv. RAN. Ser. Mat., 67:1 (2003),  21–32
  33. Periodic Gibbs Measures for the Ising Model with Competing Interactions

    TMF, 135:3 (2003),  515–523
  34. Representability of Trees and Some of Their Applications

    Mat. Zametki, 72:4 (2002),  516–527
  35. Gibbs Measures and Markov Random Fields with Association $I$

    Mat. Zametki, 72:1 (2002),  94–101
  36. $\mathbb {Z}$Existence of a Phase Transition for the Potts $p$-adic Model on the Set $\mathbb {Z}$

    TMF, 130:3 (2002),  500–507
  37. Countably Periodic Gibbs Measures of the Ising Model on the Cayley Tree

    TMF, 130:1 (2002),  109–118
  38. Periodic Gibbs measures of the inhomogeneous Ising model on trees

    Uspekhi Mat. Nauk, 56:1(337) (2001),  175–176
  39. Von Neumann algebra corresponding to one phase of the inhomogeneous Potts model on a Cayley tree

    TMF, 126:2 (2001),  206–213
  40. Random walks in random environments of metric groups

    Mat. Zametki, 67:1 (2000),  129–135
  41. The disordered phase of the inhomogeneous Potts model is extremal on the Cayley tree

    TMF, 124:3 (2000),  410–418
  42. On unordered phases of certain models on a Cayley tree

    Mat. Sb., 190:2 (1999),  31–42
  43. Construction of an uncountable number of limiting Gibbs measures in the inhomogeneous Ising model

    TMF, 118:1 (1999),  95–104
  44. Description of limit Gibbs measures for $\lambda$-models on Bethe lattices

    Sibirsk. Mat. Zh., 39:2 (1998),  427–435
  45. Partition structures of the Cayley tree and applications for describing periodic Gibbs distributions

    TMF, 112:1 (1997),  170–175
  46. Discription of periodic extreme Gibbs measures of some lattice models on the Cayley tree

    TMF, 111:1 (1997),  109–117


© Steklov Math. Inst. of RAS, 2026