|
|
Publications in Math-Net.Ru
-
Search for signs of neutron and proton halos in the isobaric analog excited states of A = 14 nuclei
Pis'ma v Zh. Èksper. Teoret. Fiz., 112:8 (2020), 499–500
-
States of $^{12}$N with enhanced radii
Pis'ma v Zh. Èksper. Teoret. Fiz., 111:8 (2020), 483–484
-
Proton halo in the $^{13}\mathrm{N}$ nucleus
Pis'ma v Zh. Èksper. Teoret. Fiz., 104:8 (2016), 547–551
-
Inelastic $^9\mathrm{Be} + \alpha$ scattering at $90$ MeV: Whether the concept of the $^9\mathrm{Be}$ structure should be changed?
Pis'ma v Zh. Èksper. Teoret. Fiz., 104:5 (2016), 299–302
-
Neutron halo in the exotic first excited state of $^9$Be
Pis'ma v Zh. Èksper. Teoret. Fiz., 102:7 (2015), 467–470
-
Possible observation of an excited state with an anomalously small radius in the $^{13}\mathrm{C}$ nucleus
Pis'ma v Zh. Èksper. Teoret. Fiz., 102:4 (2015), 227–230
-
Dynamics of solitons in the model of nonlinear Schrödinger equation with an external harmonic potential: II. Dark Solitons
Kvantovaya Elektronika, 35:10 (2005), 929–937
-
Dynamics of solitons in the model of nonlinear Schrödinger equation with an external harmonic potential: I. Bright solitons
Kvantovaya Elektronika, 35:9 (2005), 778–786
-
Stimulated Raman self-scattering of femtosecond pulses. II. The self-compression of Schrödinger solitons in a spectrally inhomogeneous dispersion medium
Kvantovaya Elektronika, 33:5 (2003), 456–459
-
Stimulated Raman self-scattering of femtosecond pulses. I. Soliton and non-soliton regimes of coherent self-scattering
Kvantovaya Elektronika, 33:4 (2003), 325–330
-
High-energy optical Schrödinger solitons
Pis'ma v Zh. Èksper. Teoret. Fiz., 74:12 (2001), 649–654
-
Nonlinear bloch waves
Pis'ma v Zh. Èksper. Teoret. Fiz., 73:2 (2001), 64–67
-
Optimal control of optical soliton parameters: Part 2. Concept of nonlinear Bloch waves in the problem of soliton management
Kvantovaya Elektronika, 31:11 (2001), 1016–1022
-
Optimal control of optical soliton parameters: Part 1. The Lax representation in the problem of soliton management
Kvantovaya Elektronika, 31:11 (2001), 1007–1015
-
Femtosecond Maxwellian solitons. II. Verification of a model of the nonlinear Schroedinger equation in the theory of optical solitons
Kvantovaya Elektronika, 24:11 (1997), 969–972
-
Femtosecond Maxwellian solitons. I. Modelling of the dynamics of Maxwellian solitons on a personal computer
Kvantovaya Elektronika, 24:10 (1997), 923–928
© , 2026