RUS  ENG
Full version
PEOPLE

Ivashkovich Sergei Mikhailovich

Publications in Math-Net.Ru

  1. Bochner–Hartogs type extension theorem for roots and logarithms of holomorphic line bundles

    Trudy Mat. Inst. Steklova, 279 (2012),  269–287
  2. Holomorphic Structure on the Space of Riemann Surfaces with Marked Boundary

    Trudy Mat. Inst. Steklova, 235 (2001),  98–109
  3. Deformations of non-compact complex curves and envelopes of meromorphy of spheres

    Mat. Sb., 189:9 (1998),  23–60
  4. Hartogs-type theorems for meromorphic mappings, spherical shells and the complex Plateau problem

    Dokl. Akad. Nauk SSSR, 321:5 (1991),  892–895
  5. Spherical shells as obstructions to continuation of holomorphic mappings

    Mat. Zametki, 49:2 (1991),  141–142
  6. A Thullen-type extension theorem for line bundles with $L^2$-bounded curvature

    Dokl. Akad. Nauk SSSR, 303:2 (1988),  284–286
  7. The hartogs phenomenon for holomorphically convex Kähler manifolds

    Izv. Akad. Nauk SSSR Ser. Mat., 50:4 (1986),  866–873
  8. Biholomorphic classification of the tubular tori in $\mathbb{C}^2$

    Funktsional. Anal. i Prilozhen., 19:3 (1985),  69–70
  9. Extension of locally holomorphic mappings into a product of complex manifolds

    Izv. Akad. Nauk SSSR Ser. Mat., 49:4 (1985),  884–890
  10. Extension of locally biholomorphic mappings of domains into complex projective space

    Izv. Akad. Nauk SSSR Ser. Mat., 47:1 (1983),  197–206
  11. On the extension of holomorphic mappings of a real analytic hypersurface into complex projective space

    Dokl. Akad. Nauk SSSR, 267:4 (1982),  779–780
  12. Envelopes of holomorphy of some tube sets in $\mathbf C^2$ and the monodromy theorem

    Izv. Akad. Nauk SSSR Ser. Mat., 45:4 (1981),  896–904


© Steklov Math. Inst. of RAS, 2026