RUS  ENG
Full version
PEOPLE

Gevorkyan Gegham Grigor'evich

Publications in Math-Net.Ru

  1. On the Uniqueness of Haar Series Converging over Subsequences of Partial Sums

    Mat. Zametki, 118:3 (2025),  407–416
  2. Weyl uc-multipliers for Strömberg wavelets

    Sibirsk. Mat. Zh., 66:2 (2025),  180–187
  3. On Weyl multipliers for unconditional convergence of series in Ciesielski systems

    Mat. Zametki, 116:5 (2024),  707–713
  4. On uniqueness for series in the general Franklin system

    Mat. Sb., 215:3 (2024),  21–36
  5. On uniqueness for Franklin series with a convergent subsequence of partial sums

    Mat. Sb., 214:2 (2023),  58–71
  6. On the Representation of Measurable Functions by Absolutely Convergent Orthogonal Spline Series

    Trudy Mat. Inst. Steklova, 319 (2022),  73–82
  7. Uniqueness Theorems for Multiple Franklin Series Converging over Rectangles

    Mat. Zametki, 109:2 (2021),  206–218
  8. Uniqueness theorems for simple trigonometric series with application to multiple series

    Mat. Sb., 212:12 (2021),  20–39
  9. Uniqueness theorems for one-dimensional and double Franklin series

    Izv. RAN. Ser. Mat., 84:5 (2020),  3–19
  10. Absolute convergence of the double fourier–franklin series

    Sibirsk. Mat. Zh., 61:3 (2020),  513–527
  11. On the Convergence of Franklin Series to $+\infty$

    Mat. Zametki, 106:3 (2019),  341–349
  12. Uniqueness Theorems for Generalized Haar Systems

    Mat. Zametki, 104:1 (2018),  11–24
  13. Uniqueness theorems for Franklin series converging to integrable functions

    Mat. Sb., 209:6 (2018),  25–46
  14. Uniqueness theorems for Franklin series

    Trudy Mat. Inst. Steklova, 303 (2018),  67–86
  15. Uniqueness Theorem for Multiple Franklin Series

    Mat. Zametki, 101:2 (2017),  199–210
  16. On a summation method for Vilenkin and generalized Haar systems

    Proceedings of the YSU, Physical and Mathematical Sciences, 51:1 (2017),  13–17
  17. On the uniqueness of series in the Franklin system

    Mat. Sb., 207:12 (2016),  30–53
  18. Uniqueness Theorems for Series in the Franklin System

    Mat. Zametki, 98:5 (2015),  786–789
  19. General Franklin system as a basis in $B^1[0,1]$

    Izv. RAN. Ser. Mat., 78:6 (2014),  65–82
  20. Majorant and Paley function for series in general Franklin systems

    Trudy Mat. Inst. Steklova, 280 (2013),  138–149
  21. On absolute and unconditional convergence of series in the general Franklin system

    Izv. RAN. Ser. Mat., 73:2 (2009),  69–90
  22. On Walsh series with monotone coefficients

    Izv. RAN. Ser. Mat., 63:1 (1999),  41–60
  23. Some linear summation methods for Fourier series

    Mat. Sb., 189:5 (1998),  129–152
  24. Majorants and uniqueness of series in the Franklin system

    Mat. Zametki, 59:4 (1996),  521–545
  25. On uniqueness of multiple trigonometric series

    Mat. Sb., 184:11 (1993),  93–130
  26. Trigonometric series summable by means of Riemann's method

    Mat. Zametki, 52:3 (1992),  17–34
  27. Uniqueness of multiple trigonometric series

    Mat. Zametki, 52:2 (1992),  148–150
  28. Uniqueness of trigonometric series that are summable by the Riemann method

    Dokl. Akad. Nauk SSSR, 313:6 (1990),  1302–1305
  29. Uniqueness of Franklin series

    Mat. Zametki, 46:2 (1989),  51–58
  30. Trigonometric integrals that are integrable by the Riemann method

    Mat. Zametki, 45:5 (1989),  114–117
  31. Absolute and conditional convergence of series in Franklin systems

    Mat. Zametki, 45:3 (1989),  30–42
  32. On the uniqueness of trigonometric series

    Mat. Sb., 180:11 (1989),  1462–1474
  33. Some theorems on unconditional convergence and the majorant of Franklin series and their applications to the spaces $\operatorname{Re}H_p$

    Trudy Mat. Inst. Steklov., 190 (1989),  49–74
  34. On the Haar and Franklin series with identical coefficients

    Proceedings of the YSU, Physical and Mathematical Sciences, 1989, no. 3,  3–9
  35. Some theorems on unconditional convergence and a majorant of Franklin series, and their application to the spaces $\operatorname{Re}H_p$

    Dokl. Akad. Nauk SSSR, 302:6 (1988),  1292–1295
  36. Weyl multipliers for the unconditional convergence of series in a Franklin system

    Mat. Zametki, 41:6 (1987),  789–797
  37. Unboundedness of the shift operator with respect to the Franklin system in the space $L_1$

    Mat. Zametki, 38:4 (1985),  523–533
  38. Sets of relative uniqueness for the Fourier transform and integrals

    Sibirsk. Mat. Zh., 26:5 (1985),  47–61
  39. Uniqueness sets for complete orthonormal systems

    Mat. Zametki, 32:5 (1982),  651–656


© Steklov Math. Inst. of RAS, 2026