|
|
Publications in Math-Net.Ru
-
On the Uniqueness of Haar Series Converging over Subsequences of Partial Sums
Mat. Zametki, 118:3 (2025), 407–416
-
Weyl uc-multipliers for Strömberg wavelets
Sibirsk. Mat. Zh., 66:2 (2025), 180–187
-
On Weyl multipliers for unconditional convergence of series in Ciesielski systems
Mat. Zametki, 116:5 (2024), 707–713
-
On uniqueness for series in the general Franklin system
Mat. Sb., 215:3 (2024), 21–36
-
On uniqueness for Franklin series with a convergent subsequence of partial sums
Mat. Sb., 214:2 (2023), 58–71
-
On the Representation of Measurable Functions by Absolutely Convergent Orthogonal Spline Series
Trudy Mat. Inst. Steklova, 319 (2022), 73–82
-
Uniqueness Theorems for Multiple Franklin Series Converging over Rectangles
Mat. Zametki, 109:2 (2021), 206–218
-
Uniqueness theorems for simple trigonometric series with application to multiple series
Mat. Sb., 212:12 (2021), 20–39
-
Uniqueness theorems for one-dimensional and double Franklin series
Izv. RAN. Ser. Mat., 84:5 (2020), 3–19
-
Absolute convergence of the double fourier–franklin series
Sibirsk. Mat. Zh., 61:3 (2020), 513–527
-
On the Convergence of Franklin Series to $+\infty$
Mat. Zametki, 106:3 (2019), 341–349
-
Uniqueness Theorems for Generalized Haar Systems
Mat. Zametki, 104:1 (2018), 11–24
-
Uniqueness theorems for Franklin series converging to integrable functions
Mat. Sb., 209:6 (2018), 25–46
-
Uniqueness theorems for Franklin series
Trudy Mat. Inst. Steklova, 303 (2018), 67–86
-
Uniqueness Theorem for Multiple Franklin Series
Mat. Zametki, 101:2 (2017), 199–210
-
On a summation method for Vilenkin and generalized Haar systems
Proceedings of the YSU, Physical and Mathematical Sciences, 51:1 (2017), 13–17
-
On the uniqueness of series in the Franklin system
Mat. Sb., 207:12 (2016), 30–53
-
Uniqueness Theorems for Series in the Franklin System
Mat. Zametki, 98:5 (2015), 786–789
-
General Franklin system as a basis in $B^1[0,1]$
Izv. RAN. Ser. Mat., 78:6 (2014), 65–82
-
Majorant and Paley function for series in general Franklin systems
Trudy Mat. Inst. Steklova, 280 (2013), 138–149
-
On absolute and unconditional convergence of series in the general Franklin system
Izv. RAN. Ser. Mat., 73:2 (2009), 69–90
-
On Walsh series with monotone coefficients
Izv. RAN. Ser. Mat., 63:1 (1999), 41–60
-
Some linear summation methods for Fourier series
Mat. Sb., 189:5 (1998), 129–152
-
Majorants and uniqueness of series in the Franklin system
Mat. Zametki, 59:4 (1996), 521–545
-
On uniqueness of multiple trigonometric series
Mat. Sb., 184:11 (1993), 93–130
-
Trigonometric series summable by means of Riemann's method
Mat. Zametki, 52:3 (1992), 17–34
-
Uniqueness of multiple trigonometric series
Mat. Zametki, 52:2 (1992), 148–150
-
Uniqueness of trigonometric series that are summable by the
Riemann method
Dokl. Akad. Nauk SSSR, 313:6 (1990), 1302–1305
-
Uniqueness of Franklin series
Mat. Zametki, 46:2 (1989), 51–58
-
Trigonometric integrals that are integrable by the Riemann method
Mat. Zametki, 45:5 (1989), 114–117
-
Absolute and conditional convergence of series in Franklin systems
Mat. Zametki, 45:3 (1989), 30–42
-
On the uniqueness of trigonometric series
Mat. Sb., 180:11 (1989), 1462–1474
-
Some theorems on unconditional convergence and the majorant of Franklin series and their applications to the spaces $\operatorname{Re}H_p$
Trudy Mat. Inst. Steklov., 190 (1989), 49–74
-
On the Haar and Franklin series with identical coefficients
Proceedings of the YSU, Physical and Mathematical Sciences, 1989, no. 3, 3–9
-
Some theorems on unconditional convergence and a majorant of Franklin series, and their application to the spaces $\operatorname{Re}H_p$
Dokl. Akad. Nauk SSSR, 302:6 (1988), 1292–1295
-
Weyl multipliers for the unconditional convergence of series in a Franklin system
Mat. Zametki, 41:6 (1987), 789–797
-
Unboundedness of the shift operator with respect to the Franklin system in the space $L_1$
Mat. Zametki, 38:4 (1985), 523–533
-
Sets of relative uniqueness for the Fourier transform and integrals
Sibirsk. Mat. Zh., 26:5 (1985), 47–61
-
Uniqueness sets for complete orthonormal systems
Mat. Zametki, 32:5 (1982), 651–656
© , 2026