|
|
Publications in Math-Net.Ru
-
Resonances and discrete spectrum of the Laplace operator on hyperbolic surfaces
Izv. RAN. Ser. Mat., 89:5 (2025), 165–180
-
Voronoi's formulae and the Gauss problem
Uspekhi Mat. Nauk, 79:1(475) (2024), 59–134
-
On Jutila's integral in the circle problem
Izv. RAN. Ser. Mat., 86:3 (2022), 3–46
-
Spectrum of the Laplace operator on closed surfaces
Uspekhi Mat. Nauk, 77:1(463) (2022), 91–108
-
Numerical investigation of the properties of remainder in Gauss's circle problem
Zh. Vychisl. Mat. Mat. Fiz., 62:12 (2022), 2002–2017
-
Distribution of prime numbers and the discrete spectrum of the Laplace operator
Izv. RAN. Ser. Mat., 84:5 (2020), 151–168
-
On relationships between the discrete and resonance spectra for the Laplace operator on a non-compact hyperbolic Riemann surface
Funktsional. Anal. i Prilozhen., 53:3 (2019), 61–78
-
The discrete spectrum of the Laplace operator on the fundamental domain of the modular group and the Chebyshev psi-function
Izv. RAN. Ser. Mat., 83:5 (2019), 167–180
-
Circle problem and the spectrum of the Laplace operator on closed 2-manifolds
Uspekhi Mat. Nauk, 74:5(449) (2019), 145–162
-
Bounds and behaviour of the quantities $P(x)$, $\Delta(x)$ on short intervals
Izv. RAN. Ser. Mat., 80:6 (2016), 230–246
-
On the Weyl Formula for the Laplace Operator on Hyperbolic Riemann Surfaces
Funktsional. Anal. i Prilozhen., 48:2 (2014), 93–96
-
On the Selberg Trace Formula for Strictly Hyperbolic Groups
Funktsional. Anal. i Prilozhen., 47:4 (2013), 53–66
-
Explicit Formula for the Spectral Counting Function of the Laplace Operator on a Compact Riemannian Surface of Genus $g>1$
Funktsional. Anal. i Prilozhen., 46:2 (2012), 66–82
-
On the second term in the Weyl formula for the spectrum of the Laplace operator on the two-dimensional torus and the number of integer points in spectral domains
Izv. RAN. Ser. Mat., 75:5 (2011), 139–176
-
Asymptotic behaviour of the positive spectrum of a family of periodic Sturm–Liouville problems
under continuous passage from a definite problem to an indefinite one
Izv. RAN. Ser. Mat., 73:3 (2009), 151–182
-
Remarks on uniform combined estimates of oscillatory integrals
with simple singularities
Izv. RAN. Ser. Mat., 72:4 (2008), 173–196
-
Image Restoration in Optical Acoustic Tomography
Probl. Peredachi Inf., 40:3 (2004), 81–107
-
The Paley–Wiener Theorem for the Generalized Radon Transform on the Plane
Funktsional. Anal. i Prilozhen., 37:3 (2003), 65–72
-
The Generalized Radon Transform on the Plane, the Inverse Transform, and the Cavalieri Conditions
Funktsional. Anal. i Prilozhen., 35:4 (2001), 38–53
-
On the number of lattice points in three-dimensional solids of revolution
Izv. RAN. Ser. Mat., 64:2 (2000), 121–140
-
Reconstruction of characteristic functions in two-dimensional Radon tomography
Uspekhi Mat. Nauk, 53:1(319) (1998), 115–198
-
Spherical convergence of the Fourier integral of the indicator function of an $N$-dimensional domain
Mat. Sb., 189:7 (1998), 145–157
-
Estimates with constants for some classes of oscillatory integrals
Uspekhi Mat. Nauk, 52:1(313) (1997), 77–148
-
Spherical convergence of the Fourier series and integral of the indicator of a two-dimensional domain
Trudy Mat. Inst. Steklova, 218 (1997), 354–373
-
Convergence of algorithms for the numerical solution of a
convolution equation
Dokl. Akad. Nauk SSSR, 315:2 (1990), 309–313
-
Application of smooth regularizers for convolution computation
Dokl. Akad. Nauk SSSR, 276:1 (1984), 38–42
-
Einstein spaces and Yang–Mills fields
Dokl. Akad. Nauk SSSR, 225:4 (1975), 790–793
-
Theory of Yang–Mills fields
TMF, 24:3 (1975), 347–356
© , 2026