RUS  ENG
Full version
PEOPLE

Popov Dmitrii Aleksandrovich

Publications in Math-Net.Ru

  1. Resonances and discrete spectrum of the Laplace operator on hyperbolic surfaces

    Izv. RAN. Ser. Mat., 89:5 (2025),  165–180
  2. Voronoi's formulae and the Gauss problem

    Uspekhi Mat. Nauk, 79:1(475) (2024),  59–134
  3. On Jutila's integral in the circle problem

    Izv. RAN. Ser. Mat., 86:3 (2022),  3–46
  4. Spectrum of the Laplace operator on closed surfaces

    Uspekhi Mat. Nauk, 77:1(463) (2022),  91–108
  5. Numerical investigation of the properties of remainder in Gauss's circle problem

    Zh. Vychisl. Mat. Mat. Fiz., 62:12 (2022),  2002–2017
  6. Distribution of prime numbers and the discrete spectrum of the Laplace operator

    Izv. RAN. Ser. Mat., 84:5 (2020),  151–168
  7. On relationships between the discrete and resonance spectra for the Laplace operator on a non-compact hyperbolic Riemann surface

    Funktsional. Anal. i Prilozhen., 53:3 (2019),  61–78
  8. The discrete spectrum of the Laplace operator on the fundamental domain of the modular group and the Chebyshev psi-function

    Izv. RAN. Ser. Mat., 83:5 (2019),  167–180
  9. Circle problem and the spectrum of the Laplace operator on closed 2-manifolds

    Uspekhi Mat. Nauk, 74:5(449) (2019),  145–162
  10. Bounds and behaviour of the quantities $P(x)$, $\Delta(x)$ on short intervals

    Izv. RAN. Ser. Mat., 80:6 (2016),  230–246
  11. On the Weyl Formula for the Laplace Operator on Hyperbolic Riemann Surfaces

    Funktsional. Anal. i Prilozhen., 48:2 (2014),  93–96
  12. On the Selberg Trace Formula for Strictly Hyperbolic Groups

    Funktsional. Anal. i Prilozhen., 47:4 (2013),  53–66
  13. Explicit Formula for the Spectral Counting Function of the Laplace Operator on a Compact Riemannian Surface of Genus $g>1$

    Funktsional. Anal. i Prilozhen., 46:2 (2012),  66–82
  14. On the second term in the Weyl formula for the spectrum of the Laplace operator on the two-dimensional torus and the number of integer points in spectral domains

    Izv. RAN. Ser. Mat., 75:5 (2011),  139–176
  15. Asymptotic behaviour of the positive spectrum of a family of periodic Sturm–Liouville problems under continuous passage from a definite problem to an indefinite one

    Izv. RAN. Ser. Mat., 73:3 (2009),  151–182
  16. Remarks on uniform combined estimates of oscillatory integrals with simple singularities

    Izv. RAN. Ser. Mat., 72:4 (2008),  173–196
  17. Image Restoration in Optical Acoustic Tomography

    Probl. Peredachi Inf., 40:3 (2004),  81–107
  18. The Paley–Wiener Theorem for the Generalized Radon Transform on the Plane

    Funktsional. Anal. i Prilozhen., 37:3 (2003),  65–72
  19. The Generalized Radon Transform on the Plane, the Inverse Transform, and the Cavalieri Conditions

    Funktsional. Anal. i Prilozhen., 35:4 (2001),  38–53
  20. On the number of lattice points in three-dimensional solids of revolution

    Izv. RAN. Ser. Mat., 64:2 (2000),  121–140
  21. Reconstruction of characteristic functions in two-dimensional Radon tomography

    Uspekhi Mat. Nauk, 53:1(319) (1998),  115–198
  22. Spherical convergence of the Fourier integral of the indicator function of an $N$-dimensional domain

    Mat. Sb., 189:7 (1998),  145–157
  23. Estimates with constants for some classes of oscillatory integrals

    Uspekhi Mat. Nauk, 52:1(313) (1997),  77–148
  24. Spherical convergence of the Fourier series and integral of the indicator of a two-dimensional domain

    Trudy Mat. Inst. Steklova, 218 (1997),  354–373
  25. Convergence of algorithms for the numerical solution of a convolution equation

    Dokl. Akad. Nauk SSSR, 315:2 (1990),  309–313
  26. Application of smooth regularizers for convolution computation

    Dokl. Akad. Nauk SSSR, 276:1 (1984),  38–42
  27. Einstein spaces and Yang–Mills fields

    Dokl. Akad. Nauk SSSR, 225:4 (1975),  790–793
  28. Theory of Yang–Mills fields

    TMF, 24:3 (1975),  347–356


© Steklov Math. Inst. of RAS, 2026