RUS  ENG
Full version
PEOPLE

Turaev Dmitry Vladimirovich

Publications in Math-Net.Ru

  1. A Geometric Model for Pseudohyperbolic Shilnikov Attractors

    Regul. Chaotic Dyn., 30:2 (2025),  174–187
  2. Scientific Heritage of L.P. Shilnikov. Part II. Homoclinic Chaos

    Regul. Chaotic Dyn., 30:2 (2025),  155–173
  3. In Honor of the 90th Anniversary of Leonid Pavlovich Shilnikov (1934–2011)

    Regul. Chaotic Dyn., 30:1 (2025),  1–8
  4. On the Regularity of Invariant Foliations

    Regul. Chaotic Dyn., 29:1 (2024),  6–24
  5. On methods for verification of the pseudohyperbolicity of strange attractors

    Izvestiya VUZ. Applied Nonlinear Dynamics, 29:1 (2021),  160–185
  6. On three types of dynamics and the notion of attractor

    Trudy Mat. Inst. Steklova, 297 (2017),  133–157
  7. Bifurcation to chaos in the ñomplex Ginzburg–Landau equation with large third-order dispersion

    Model. Anal. Inform. Sist., 22:3 (2015),  327–336
  8. Hyperbolic Sets near Homoclinic Loops to a Saddle for Systems with a First Integral

    Regul. Chaotic Dyn., 19:6 (2014),  681–693
  9. Energy Growth for a Nonlinear Oscillator Coupled to a Monochromatic Wave

    Regul. Chaotic Dyn., 19:4 (2014),  513–522
  10. Scientific Heritage of L.P. Shilnikov

    Regul. Chaotic Dyn., 19:4 (2014),  435–460
  11. On symmetry breaking bifurcations in reversible systems

    Nelin. Dinam., 8:2 (2012),  323–343
  12. Breakdown of Symmetry in Reversible Systems

    Regul. Chaotic Dyn., 17:3-4 (2012),  318–336
  13. Quasiperiodic regimes in multisection semiconductor lasers

    Regul. Chaotic Dyn., 11:2 (2006),  213–224
  14. An example of a resonant homoclinic loop of infinite cyclicity

    Mosc. Math. J., 5:1 (2005),  283–293
  15. Blue-sky catastrophe in singularly perturbed systems

    Mosc. Math. J., 5:1 (2005),  269–282
  16. Existence of Infinitely Many Elliptic Periodic Orbits in Four-Dimensional Symplectic Maps with a Homoclinic Tangency

    Trudy Mat. Inst. Steklova, 244 (2004),  115–142
  17. Homoclinic tangencies of arbitrary order in Newhouse domains

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 67 (1999),  69–128
  18. Elliptic Periodic Orbits Near a Homoclinic Tangency in Four-Dimensional Symplectic Maps and Hamiltonian Systems With Three Degrees of Freedom

    Regul. Chaotic Dyn., 3:4 (1998),  3–26
  19. Asymptotic normal forms for equilibria with a triplet of zero characteristic exponents in systems with symmetry

    Regul. Chaotic Dyn., 3:1 (1998),  19–27
  20. An example of a wild strange attractor

    Mat. Sb., 189:2 (1998),  137–160
  21. Super-homoclinic orbits and multi-pulse homoclinic loops in Hamiltonian systems with discrete symmetries

    Regul. Chaotic Dyn., 2:3-4 (1997),  126–138
  22. On Newhouse domains of two-dimensional diffeomorphisms that are close to a diffeomorphism with a structurally unstable heteroclinic contour

    Trudy Mat. Inst. Steklova, 216 (1997),  76–125
  23. Blue sky catastrophes

    Dokl. Akad. Nauk, 342:5 (1995),  596–599
  24. Dynamical phenomena in multidimensional systems with a structurally unstable homoclinic Poincaré curve

    Dokl. Akad. Nauk, 330:2 (1993),  144–147
  25. On the existence of Newhouse regions in a neighborhood of systems with a structurally unstable homoclinic Poincaré curve (the multidimensional case)

    Dokl. Akad. Nauk, 329:4 (1993),  404–407
  26. Models with a structurally unstable homoclinic Poincaré curve

    Dokl. Akad. Nauk SSSR, 320:2 (1991),  269–272
  27. Classification of self-localized states of an electromagnetic field in a nonlinear medium

    Dokl. Akad. Nauk SSSR, 309:4 (1989),  848–852
  28. Hamiltonian systems with homoclinic saddle curves

    Dokl. Akad. Nauk SSSR, 304:4 (1989),  811–814
  29. On bifurcations of a homoclinic “figure eight” of a multi-dimensional saddle

    Uspekhi Mat. Nauk, 43:5(263) (1988),  223–224
  30. Bifurcation of a homoclinic “figure eight” saddle with a negative saddle value

    Dokl. Akad. Nauk SSSR, 290:6 (1986),  1301–1304
  31. Bifurcations of two-dimensional dynamical systems close to a system with two separatrix loops

    Uspekhi Mat. Nauk, 40:2(242) (1985),  203–204

  32. In Honor of Sergey Gonchenko and Vladimir Belykh

    Regul. Chaotic Dyn., 29:1 (2024),  1–5
  33. 70 years of sergey v. gonchenko

    Izvestiya VUZ. Applied Nonlinear Dynamics, 31:3 (2023),  247–248
  34. To the 75th anniversary of Vyacheslav Zigmundovich Grines

    Zhurnal SVMO, 23:4 (2021),  472–476
  35. Leonid Pavlovich Shilnikov (17.12.1934–26.12.2011)

    Nelin. Dinam., 8:1 (2012),  183–186
  36. Leonid Pavlovich Shil'nikov (obituary)

    Uspekhi Mat. Nauk, 67:3(405) (2012),  175–178
  37. Universal dynamics in a neighborhood of a generic elliptic periodic point

    Regul. Chaotic Dyn., 15:2-3 (2010),  159–164
  38. On Global Bifurcations in Three-Dimensional Diffeomorphisms Leading to Wild Lorenz-Like Attractors

    Regul. Chaotic Dyn., 14:1 (2009),  137–147
  39. Leonid Pavlovich Shilnikov. On his 70th birthday

    Regul. Chaotic Dyn., 11:2 (2006),  139–140


© Steklov Math. Inst. of RAS, 2026