RUS  ENG
Full version
PEOPLE

Nikolaev Valerii Dmitrievich

Publications in Math-Net.Ru

  1. Centrifugal bubble O2 (1Δ) gas generator with a total pressure of 100 Torr

    Kvantovaya Elektronika, 38:8 (2008),  794–800
  2. Oxygen—iodine ejector laser with a centrifugal bubbling singlet-oxygen generator

    Kvantovaya Elektronika, 35:10 (2005),  907–908
  3. Effect of the solution temperature in a singlet-oxygen generator on the formation of active medium in an ejector oxygen — iodine laser

    Kvantovaya Elektronika, 32:2 (2002),  101–106
  4. Amplification and gas-dynamic parameters of the active oxygen–iodine medium produced by an ejector nozzle unit

    Kvantovaya Elektronika, 31:8 (2001),  678–682
  5. Calculation of the mixing chamber of an ejector chemical oxygen – iodine laser

    Kvantovaya Elektronika, 31:6 (2001),  510–514
  6. Temperature dependence of the collision broadening of the 2P1/22P3/2 line of atomic iodine

    Kvantovaya Elektronika, 31:4 (2001),  373–376
  7. Efficient chemical oxygen – iodine laser with a high total pressure of the active medium

    Kvantovaya Elektronika, 31:1 (2001),  30–34
  8. Supersonic oxygen — iodine 1.4-kW laser with a 5 cm gain length and a nitrogen-diluted active medium

    Kvantovaya Elektronika, 30:2 (2000),  161–166
  9. Luminescence of the oxygen dimole at the output of a chemical singlet-oxygen generator

    Kvantovaya Elektronika, 28:3 (1999),  212–216
  10. Efficient chemical oxygen–iodine laser with longitudinal flow of the active medium

    Kvantovaya Elektronika, 26:2 (1999),  114–116
  11. Comparative characteristics of subsonic and supersonic oxygen–iodine lasers

    Kvantovaya Elektronika, 25:5 (1998),  413–415
  12. Chemical oxygen — iodine laser with mixing of supersonic jets

    Kvantovaya Elektronika, 24:6 (1997),  491–494
  13. Gain saturation and the efficiency of energy conversion into radiation in a supersonic oxygen — iodine laserwith a stable cavity

    Kvantovaya Elektronika, 24:5 (1997),  423–428
  14. Highly efficient supersonic chemical oxygen — iodine laser with a chlorine flow rate of 10 mmol s–1

    Kvantovaya Elektronika, 24:3 (1997),  201–205
  15. Oxygen–iodine laser with a drop-jet generator of O2(1Δ) operating at pressures up to 90 Torr

    Kvantovaya Elektronika, 22:5 (1995),  443–445
  16. Transport of high-pressure O2 (1Δ)

    Kvantovaya Elektronika, 21:3 (1994),  247–249
  17. Jet O2(#delta_1#) generator with oxygen pressures up to 13.3 kPa

    Kvantovaya Elektronika, 21:2 (1994),  129–132
  18. Compact oxygen-iodine laser with a thermally insulated jet singlet–oxygen generator

    Kvantovaya Elektronika, 21:1 (1994),  23–24
  19. Unstable resonator with a semitransparent exit mirror for a fast-flow CO2 laser

    Kvantovaya Elektronika, 19:5 (1992),  456–460
  20. An oxygen–iodine laser utilizing a high-pressure O2 (1Δ) generator

    Kvantovaya Elektronika, 18:12 (1991),  1417–1418
  21. Highly efficient jet O2 (1Δ) generator

    Kvantovaya Elektronika, 18:7 (1991),  826–832
  22. Electric-discharge CO2 laser with a vortex gas flow

    Kvantovaya Elektronika, 17:5 (1990),  537–543
  23. Investigation of a jet generator of O2(1Δ)

    Kvantovaya Elektronika, 16:11 (1989),  2197–2200
  24. Investigation of a pulsed oxygen–iodine chemical laser

    Kvantovaya Elektronika, 16:8 (1989),  1587–1592
  25. Relaxation of the energy stored in an oxygen–iodine active medium containing bound iodine

    Kvantovaya Elektronika, 15:10 (1988),  2078–2086
  26. Laser-arc interaction with metals

    Kvantovaya Elektronika, 14:11 (1987),  2312–2313
  27. Optimization of the energy characteristics of an oxygen–iodine laser

    Kvantovaya Elektronika, 14:9 (1987),  1807–1809
  28. Equalization of the distribution of the energy density over the cross section of a beam in a solid-state laser processing system

    Kvantovaya Elektronika, 9:4 (1982),  815–817
  29. Wavefront reversal by four-wave mixing in a medium exhibiting Raman nonlinearity

    Kvantovaya Elektronika, 9:2 (1982),  229–234
  30. Four-wave mixing in resonantly amplifying media in the inversion saturation regime

    Kvantovaya Elektronika, 8:8 (1981),  1734–1741
  31. Numerical investigation of the possible use of stimulated Brillouin scattering in laser fusion facilities

    Kvantovaya Elektronika, 7:12 (1980),  2536–2542
  32. Reproduction of spatial and temporal structures of exciting radiation by parallel stimulated scattering under saturation conditions

    Kvantovaya Elektronika, 7:10 (1980),  2230–2233
  33. Investigation of the spatial characteristics of Stokes radiation in stimulated scattering under saturation conditions

    Kvantovaya Elektronika, 6:9 (1979),  1960–1965
  34. Change in the refractive index of a liquid containing absorbing particles and illuminated with a high-power light beam

    Kvantovaya Elektronika, 6:6 (1979),  1334–1336
  35. Iodine photodissociation laser pumped by radiation from a high-current discharge with a return current conductor

    Kvantovaya Elektronika, 6:6 (1979),  1278–1282
  36. Inaccuracy of reproduction of the spatial structure of a beam in a laser amplifying medium with a reversing mirror

    Kvantovaya Elektronika, 6:4 (1979),  864–867
  37. Divergence of the radiation from a Raman laser with a slowly relaxing active medium

    Kvantovaya Elektronika, 6:2 (1979),  372–375
  38. Wavefront reversal in stimulated scattering of twofrequency pump radiation

    Kvantovaya Elektronika, 5:8 (1978),  1837–1838
  39. Stray transverse stimulated emission from Raman lasers with cryogenic active media

    Kvantovaya Elektronika, 4:7 (1977),  1566–1570
  40. Investigation of optical inhomogeneities in chemical lasers

    Kvantovaya Elektronika, 4:6 (1977),  1336–1340
  41. Reproduction of the spatial amplitude and phase distributions of a pump beam in stimulated Brillouin scattering

    Kvantovaya Elektronika, 4:1 (1977),  115–121
  42. Investigation of the divergence of radiation emitted by a photodissociation laser with an inhomogeneous active medium

    Kvantovaya Elektronika, 2:4 (1975),  666–671
  43. A method of determination of spectral width lower limit of transition luminescence line of an iodine atom $5^2P_{1/2}$$5^2P_{3/2}$ in the photodissociation laser

    Dokl. Akad. Nauk SSSR, 192:3 (1970),  528–530


© Steklov Math. Inst. of RAS, 2026