|
|
Publications in Math-Net.Ru
-
Centrifugal bubble O2 (1Δ) gas generator with a total pressure of 100 Torr
Kvantovaya Elektronika, 38:8 (2008), 794–800
-
Oxygen—iodine ejector laser with a centrifugal bubbling singlet-oxygen generator
Kvantovaya Elektronika, 35:10 (2005), 907–908
-
Effect of the solution temperature in a singlet-oxygen generator on the formation of active medium in an ejector oxygen — iodine laser
Kvantovaya Elektronika, 32:2 (2002), 101–106
-
Amplification and gas-dynamic parameters of the active oxygen–iodine medium produced by an ejector nozzle unit
Kvantovaya Elektronika, 31:8 (2001), 678–682
-
Calculation of the mixing chamber of an ejector chemical oxygen – iodine laser
Kvantovaya Elektronika, 31:6 (2001), 510–514
-
Temperature dependence of the collision broadening of the 2P1/2 – 2P3/2 line of atomic iodine
Kvantovaya Elektronika, 31:4 (2001), 373–376
-
Efficient chemical oxygen – iodine laser with a high total pressure of the active medium
Kvantovaya Elektronika, 31:1 (2001), 30–34
-
Supersonic oxygen — iodine 1.4-kW laser with a 5 cm gain length and a nitrogen-diluted active medium
Kvantovaya Elektronika, 30:2 (2000), 161–166
-
Luminescence of the oxygen dimole at the output of a chemical singlet-oxygen generator
Kvantovaya Elektronika, 28:3 (1999), 212–216
-
Efficient chemical oxygen–iodine laser with longitudinal flow of the active medium
Kvantovaya Elektronika, 26:2 (1999), 114–116
-
Comparative characteristics of subsonic and supersonic oxygen–iodine lasers
Kvantovaya Elektronika, 25:5 (1998), 413–415
-
Chemical oxygen — iodine laser with mixing of supersonic jets
Kvantovaya Elektronika, 24:6 (1997), 491–494
-
Gain saturation and the efficiency of energy conversion into radiation in a supersonic oxygen — iodine laserwith a stable cavity
Kvantovaya Elektronika, 24:5 (1997), 423–428
-
Highly efficient supersonic chemical oxygen — iodine laser with a chlorine flow rate of 10 mmol s–1
Kvantovaya Elektronika, 24:3 (1997), 201–205
-
Oxygen–iodine laser with a drop-jet generator of O2(1Δ) operating at pressures up to 90 Torr
Kvantovaya Elektronika, 22:5 (1995), 443–445
-
Transport of high-pressure O2 (1Δ)
Kvantovaya Elektronika, 21:3 (1994), 247–249
-
Jet O2(#delta_1#) generator with oxygen pressures up to 13.3 kPa
Kvantovaya Elektronika, 21:2 (1994), 129–132
-
Compact oxygen-iodine laser with a thermally insulated jet singlet–oxygen generator
Kvantovaya Elektronika, 21:1 (1994), 23–24
-
Unstable resonator with a semitransparent exit mirror for a fast-flow CO2 laser
Kvantovaya Elektronika, 19:5 (1992), 456–460
-
An oxygen–iodine laser utilizing a high-pressure O2 (1Δ) generator
Kvantovaya Elektronika, 18:12 (1991), 1417–1418
-
Highly efficient jet O2 (1Δ) generator
Kvantovaya Elektronika, 18:7 (1991), 826–832
-
Electric-discharge CO2 laser with a vortex gas flow
Kvantovaya Elektronika, 17:5 (1990), 537–543
-
Investigation of a jet generator of O2(1Δ)
Kvantovaya Elektronika, 16:11 (1989), 2197–2200
-
Investigation of a pulsed oxygen–iodine chemical laser
Kvantovaya Elektronika, 16:8 (1989), 1587–1592
-
Relaxation of the energy stored in an oxygen–iodine active medium containing bound iodine
Kvantovaya Elektronika, 15:10 (1988), 2078–2086
-
Laser-arc interaction with metals
Kvantovaya Elektronika, 14:11 (1987), 2312–2313
-
Optimization of the energy characteristics of an oxygen–iodine laser
Kvantovaya Elektronika, 14:9 (1987), 1807–1809
-
Equalization of the distribution of the energy density over the cross section of a beam in a solid-state laser processing system
Kvantovaya Elektronika, 9:4 (1982), 815–817
-
Wavefront reversal by four-wave mixing in a medium exhibiting Raman nonlinearity
Kvantovaya Elektronika, 9:2 (1982), 229–234
-
Four-wave mixing in resonantly amplifying media in the inversion saturation regime
Kvantovaya Elektronika, 8:8 (1981), 1734–1741
-
Numerical investigation of the possible use of stimulated Brillouin scattering in laser fusion facilities
Kvantovaya Elektronika, 7:12 (1980), 2536–2542
-
Reproduction of spatial and temporal structures of exciting radiation by parallel stimulated scattering under saturation conditions
Kvantovaya Elektronika, 7:10 (1980), 2230–2233
-
Investigation of the spatial characteristics of Stokes radiation in stimulated scattering under saturation conditions
Kvantovaya Elektronika, 6:9 (1979), 1960–1965
-
Change in the refractive index of a liquid containing absorbing particles and illuminated with a high-power light beam
Kvantovaya Elektronika, 6:6 (1979), 1334–1336
-
Iodine photodissociation laser pumped by radiation from a high-current discharge with a return current conductor
Kvantovaya Elektronika, 6:6 (1979), 1278–1282
-
Inaccuracy of reproduction of the spatial structure of a beam in a laser amplifying medium with a reversing mirror
Kvantovaya Elektronika, 6:4 (1979), 864–867
-
Divergence of the radiation from a Raman laser with a slowly relaxing active medium
Kvantovaya Elektronika, 6:2 (1979), 372–375
-
Wavefront reversal in stimulated scattering of twofrequency pump radiation
Kvantovaya Elektronika, 5:8 (1978), 1837–1838
-
Stray transverse stimulated emission from Raman lasers with cryogenic active media
Kvantovaya Elektronika, 4:7 (1977), 1566–1570
-
Investigation of optical inhomogeneities in chemical lasers
Kvantovaya Elektronika, 4:6 (1977), 1336–1340
-
Reproduction of the spatial amplitude and phase distributions of a pump beam in stimulated Brillouin scattering
Kvantovaya Elektronika, 4:1 (1977), 115–121
-
Investigation of the divergence of radiation emitted by a photodissociation laser with an inhomogeneous active medium
Kvantovaya Elektronika, 2:4 (1975), 666–671
-
A method of determination of spectral width lower limit of transition luminescence line of an iodine atom
$5^2P_{1/2}$ – $5^2P_{3/2}$ in the photodissociation laser
Dokl. Akad. Nauk SSSR, 192:3 (1970), 528–530
© , 2026