|
|
Publications in Math-Net.Ru
-
Explicit Solutions of Boundary-Value Problems for $(2+1)$-Dimensional Integrable Systems
Mat. Zametki, 93:3 (2013), 333–346
-
Integrable boundary conditions for $(2+1)$-dimensional models of mathematical physics
TMF, 171:3 (2012), 430–437
-
Single-Phase Averaging for the Ablowitz–Ladik Chain
Mat. Zametki, 87:6 (2010), 814–824
-
Explicit solutions of an integrable boundary value problem for the two-dimensional Toda lattice
TMF, 165:1 (2010), 25–31
-
Discrete Toda lattices and the Laplace method
TMF, 160:3 (2009), 434–443
-
Darboux-integrable discrete systems
TMF, 156:2 (2008), 207–219
-
Integrable boundary-value problem for the Volterra chain on the half-axis
Mat. Zametki, 80:5 (2006), 696–700
-
Soliton solutions of an integrable boundary problem on the half-line for the discrete Toda chain
TMF, 148:3 (2006), 387–397
-
Periodic Optical Pulses in Nonlinear Optical Fibers
TMF, 141:2 (2004), 178–191
-
Asymptotic behavior of weakly collapsing solutions of the nonlinear Schrödinger equation
Pis'ma v Zh. Èksper. Teoret. Fiz., 74:2 (2001), 76–80
-
Asymptotic expansions for partial solutions of the sixth Painlevé equation
TMF, 128:2 (2001), 193–204
-
The asymptotic behavior of solutions of the sine-Gordon equation with singularities zero
Mat. Zametki, 67:3 (2000), 329–342
-
Quantization of one-phase potentials, and Painlevé equations
Differ. Uravn., 35:6 (1999), 837–839
-
Global asymptotic formulae for the fourth Painleve transcendent
Mat. Sb., 188:12 (1997), 11–32
-
Asimptotic behaviour of the solution of the Cauchy problem for the Volterra chain with step-like initial data
TMF, 111:3 (1997), 335–344
-
Asymptotic classification of solutions to the first discrete Painlevé equation
Sibirsk. Mat. Zh., 37:5 (1996), 995–1012
-
Spectral theory of one-phase solutions of a Volterra chain
Mat. Zametki, 48:2 (1990), 145–148
-
Asymptotic integration of Volterra chains
Uspekhi Mat. Nauk, 45:3(273) (1990), 187–188
-
Hamiltonian structure of averaged difference systems
Mat. Zametki, 44:5 (1988), 584–595
© , 2026