RUS  ENG
Full version
PEOPLE

Magaril-Il'yaev Georgii Georgievich

Publications in Math-Net.Ru

  1. Generalization of Peano and Carathéodory theorems for a boundary value problem

    Mat. Zametki, 117:2 (2025),  171–180
  2. Local controllability and the boundary of the attainable set of a control system

    Mat. Sb., 216:3 (2025),  5–25
  3. Schauder's fixed point theorem and Pontryagin maximum principle

    Izv. RAN. Ser. Mat., 88:6 (2024),  3–22
  4. Controllability of an approximately defined control system

    Mat. Sb., 215:4 (2024),  3–29
  5. Main recent research results of the staff of the Chair of General Problems of Control

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2024, no. 6,  64–71
  6. On the Continuous Dependence of a Solution of a Differential Equation on the Right-Hand Side and Boundary Conditions

    Mat. Zametki, 114:1 (2023),  3–17
  7. On the Best Recovery of a Family of Operators on the Manifold $\mathbb R^n\times \mathbb T^m$

    Trudy Mat. Inst. Steklova, 323 (2023),  196–203
  8. Controllability and Second-Order Necessary Conditions for Local Infimum Trajectories in Optimal Control

    Trudy Mat. Inst. Steklova, 321 (2023),  7–30
  9. Controllability of difference approximation for a control system with continuous time

    Mat. Sb., 213:12 (2022),  3–30
  10. A Note on the Classical Implicit Function Theorem

    Mat. Zametki, 110:6 (2021),  911–915
  11. Implicit Function. Controllability and Perturbation of Optimal Control Problems

    Mat. Zametki, 109:4 (2021),  483–499
  12. Local controllability and optimality

    Mat. Sb., 212:7 (2021),  3–38
  13. General Implicit Function Theorem for Close Mappings

    Trudy Mat. Inst. Steklova, 315 (2021),  7–18
  14. Optimal Recovery of Pipe Temperature from Inaccurate Measurements

    Trudy Mat. Inst. Steklova, 312 (2021),  216–223
  15. Gamkrelidze Convexification and Bogolyubov's Theorem

    Mat. Zametki, 107:4 (2020),  483–497
  16. Local infimum and a family of maximum principles in optimal control

    Mat. Sb., 211:6 (2020),  3–39
  17. Best recovery of the solution of the Dirichlet problem in a half-space from inaccurate data

    Zh. Vychisl. Mat. Mat. Fiz., 60:10 (2020),  1711–1720
  18. Optimal recovery of semi-group operators from inaccurate data

    Eurasian Math. J., 10:4 (2019),  75–84
  19. Controllability and second-order necessary conditions for optimality

    Mat. Sb., 210:1 (2019),  3–26
  20. Generalized Needles and Second-Order Conditions in Optimal Control

    Trudy Mat. Inst. Steklova, 304 (2019),  15–31
  21. An Implicit Function Theorem for Inclusions Defined by Close Mappings

    Mat. Zametki, 103:4 (2018),  483–489
  22. Relaxation and controllability in optimal control problems

    Mat. Sb., 208:5 (2017),  3–37
  23. Exactness and optimality of methods for recovering functions from their spectrum

    Trudy Mat. Inst. Steklova, 293 (2016),  201–216
  24. The Pontryagin maximum principle. Ab ovo usque ad mala

    Trudy Mat. Inst. Steklova, 291 (2015),  215–230
  25. The best approximation of a set whose elements are known approximately

    Fundam. Prikl. Mat., 19:5 (2014),  127–141
  26. Mix of controls and the Pontryagin maximum principle

    Fundam. Prikl. Mat., 19:4 (2014),  5–20
  27. On the best methods for recovering derivatives in Sobolev classes

    Izv. RAN. Ser. Mat., 78:6 (2014),  83–102
  28. On best harmonic synthesis of periodic functions

    Fundam. Prikl. Mat., 18:5 (2013),  155–174
  29. Lagrange's principle in extremum problems with constraints

    Uspekhi Mat. Nauk, 68:3(411) (2013),  5–38
  30. How Best to Recover a Function from Its Inaccurately Given Spectrum?

    Mat. Zametki, 92:1 (2012),  59–67
  31. An Implicit-Function Theorem for Inclusions

    Mat. Zametki, 91:6 (2012),  813–818
  32. Best recovery of the Laplace operator of a function from incomplete spectral data

    Mat. Sb., 203:4 (2012),  119–130
  33. О минимуме максимума гладких функций

    Mat. Pros., Ser. 3, 15 (2011),  182–186
  34. On Optimal Harmonic Synthesis from Inaccurate Spectral Data

    Funktsional. Anal. i Prilozhen., 44:3 (2010),  76–79
  35. On the reconstruction of convolution-type operators from inaccurate information

    Trudy Mat. Inst. Steklova, 269 (2010),  181–192
  36. Метод Ньютона и его приложения к решению уравнений и теории экстремума

    Mat. Pros., Ser. 3, 13 (2009),  80–103
  37. Optimal recovery of the solution of the heat equation from inaccurate data

    Mat. Sb., 200:5 (2009),  37–54
  38. Newton's Method, Differential Equations, and the Lagrangian Principle for Necessary Extremum Conditions

    Trudy Mat. Inst. Steklova, 262 (2008),  156–177
  39. Пять сюжетов о творчестве Владимира Михайловича Тихомирова

    Mat. Pros., Ser. 3, 10 (2006),  8–22
  40. Extremal problems for linear functionals on the Tchebycheff spaces

    Fundam. Prikl. Mat., 11:2 (2005),  87–100
  41. The Lagrange principle for smooth problems with constraints on a cone

    Vladikavkaz. Mat. Zh., 7:4 (2005),  38–45
  42. Optimal recovery of values of functions and their derivatives from inaccurate data on the Fourier transform

    Mat. Sb., 195:10 (2004),  67–82
  43. A generalized theorem on an inverse function, and extremal problems with constraints

    Vladikavkaz. Mat. Zh., 6:4 (2004),  48–54
  44. Optimal interpolation and the Lagrange principle

    Vladikavkaz. Mat. Zh., 6:4 (2004),  42–47
  45. Optimal Recovery of Functions and Their Derivatives from Inaccurate Information about the Spectrum and Inequalities for Derivatives

    Funktsional. Anal. i Prilozhen., 37:3 (2003),  51–64
  46. Indefinite Knowledge about an Object and Accuracy of Its Recovery Methods

    Probl. Peredachi Inf., 39:1 (2003),  118–133
  47. Optimal reconstruction of derivatives on Sobolev classes

    Vladikavkaz. Mat. Zh., 5:1 (2003),  39–47
  48. Optimal recovery of functions and their derivatives from Fourier coefficients prescribed with an error

    Mat. Sb., 193:3 (2002),  79–100
  49. Optimal reconstruction and the theory of extremum

    Dokl. Akad. Nauk, 379:2 (2001),  161–164
  50. Extrema of linear functionals on finite-dimensional spaces

    Uspekhi Mat. Nauk, 55:6(336) (2000),  133–134
  51. Kolmogorov-type inequalities for derivatives

    Mat. Sb., 188:12 (1997),  73–106
  52. Exact values of widths of classes of functions in $L_2$

    Dokl. Akad. Nauk, 344:5 (1995),  583–585
  53. Exact values of Bernstein widths of Sobolev classes of periodic functions

    Mat. Zametki, 58:1 (1995),  139–143
  54. On best approximation by splines of function classes on the line

    Trudy Mat. Inst. Steklov., 194 (1992),  148–159
  55. Mean dimension and widths of classes of functions on the line

    Dokl. Akad. Nauk SSSR, 318:1 (1991),  35–38
  56. Optimal recovery of functionals based on inaccurate data

    Mat. Zametki, 50:6 (1991),  85–93
  57. Mean dimension, widths, and optimal recovery of Sobolev classes of functions on the line

    Mat. Sb., 182:11 (1991),  1635–1656
  58. On the synthesis of stabilization systems

    Avtomat. i Telemekh., 1990, no. 12,  66–74
  59. Exact solutions of some approximation problems by means of positive operators

    Mat. Zametki, 48:3 (1990),  91–99
  60. $\varphi$-mean diameters of classes of functions on the line

    Uspekhi Mat. Nauk, 45:2(272) (1990),  211–212
  61. Trigonometric widths of Sobolev classes of functions on $\boldsymbol R^n$

    Trudy Mat. Inst. Steklov., 181 (1988),  147–155
  62. On the problem of optimal recovery of functionals

    Uspekhi Mat. Nauk, 42:2(254) (1987),  237–238
  63. On the approximations of Sobolev classes of functions on $\boldsymbol R^n$

    Trudy Mat. Inst. Steklov., 180 (1987),  154–155
  64. Inequalities of Bernstein– Nikol'skii type and approximation of generalized Sobolev classes

    Trudy Mat. Inst. Steklov., 173 (1986),  190–204
  65. A local-optimization method for control of dynamic systems

    Dokl. Akad. Nauk SSSR, 274:2 (1984),  273–275
  66. Inequalities for derivatives, and duality

    Trudy Mat. Inst. Steklov., 161 (1983),  183–194
  67. Generalized Sobolev classes and inequalities of Bernstein–Nikol'skii type

    Dokl. Akad. Nauk SSSR, 264:5 (1982),  1066–1069
  68. Existence of extremal functions in inequalities for derivatives

    Mat. Zametki, 32:6 (1982),  823–834
  69. Problems of Bernstein and Favard type and the mean $\varepsilon$-dimension of some classes of functions

    Dokl. Akad. Nauk SSSR, 249:4 (1979),  783–786
  70. Intermediate derivatives

    Mat. Zametki, 25:1 (1979),  81–96
  71. The implicit function theorem for Lipschitz maps

    Uspekhi Mat. Nauk, 33:1(199) (1978),  221–222

  72. Online workshop on differential equations and function spaces, dedicated to the 80-th anniversary of D.Sc., professor Mikhail L'vovich Goldman

    Eurasian Math. J., 16:3 (2025),  102–104
  73. From the editors of this issue

    Mat. Sb., 216:3 (2025),  4
  74. Semen Samsonovich Kutateladze (02.10.1945–15.01.2025)

    Sibirsk. Mat. Zh., 66:5 (2025),  970–976
  75. Mikhail Lvovich Goldman (13.04.1945–05.07.2025)

    Vladikavkaz. Mat. Zh., 27:3 (2025),  143–144
  76. In memory of Semen Samsonovich Kutateladze (02.10.1945–15.01.2025)

    Vladikavkaz. Mat. Zh., 27:1 (2025),  154
  77. About the life and work of S. B. Stechkin (1920–1995)

    Vladikavkaz. Mat. Zh., 23:4 (2021),  119–128
  78. Osipenko Konstantin Yur'evich (on his 60th birthday)

    Vladikavkaz. Mat. Zh., 12:1 (2010),  68–70
  79. Vladimir Mikhailovich Tikhomirov (on his 70th birthday)

    Uspekhi Mat. Nauk, 61:1(367) (2006),  187–190
  80. Vladimir M. Tikhomirov

    Mosc. Math. J., 5:1 (2005),  295
  81. Vladimir Mikhaĭlovich Tikhomirov (on the occasion of his seventieth birthday)

    Vladikavkaz. Mat. Zh., 6:4 (2004),  3–6


© Steklov Math. Inst. of RAS, 2026