RUS  ENG
Full version
PEOPLE

Danilov Leonid Ivanovich

Publications in Math-Net.Ru

  1. On the spectrum of Landau Hamiltonian perturbed by periodic electric potential from Sobolev space $H^s_{\rm loc}(\mathbb R^2;\mathbb R),$ $s>0$

    Chelyab. Fiz.-Mat. Zh., 10:1 (2025),  37–52
  2. On the spectrum of the Landau Hamiltonian perturbed by a periodic smooth electric potential

    TMF, 221:3 (2024),  654–667
  3. On a class of Besicovitch almost periodic type selections of multivalued maps

    Izv. IMI UdGU, 61 (2023),  57–75
  4. On the spectrum of the Landau Hamiltonian perturbed by a periodic electric potential

    Mat. Sb., 214:12 (2023),  76–105
  5. On the spectrum of a multidimensional periodic magnetic Shrödinger operator with a singular electric potential

    Izv. IMI UdGU, 58 (2021),  18–47
  6. Absolute Continuity of the Spectrum of a Periodic 3D Magnetic Schrödinger Operator with Singular Electric Potential

    Mat. Zametki, 110:4 (2021),  507–523
  7. On the spectrum of a Landau Hamiltonian with a periodic electric potential $V\in L^p_{\mathrm {loc}}(\mathbb{R}^2)$, $p>1$

    Izv. IMI UdGU, 55 (2020),  42–59
  8. Spectrum of the Landau Hamiltonian with a periodic electric potential

    TMF, 202:1 (2020),  47–65
  9. On the spectrum of a relativistic Landau Hamiltonian with a periodic electric potential

    Izv. IMI UdGU, 54 (2019),  3–26
  10. On the spectrum of a two-dimensional schrödinger operator with a homogeneous magnetic field and a periodic electric potential

    Izv. IMI UdGU, 51 (2018),  3–41
  11. Shift dynamical systems and measurable selectors of multivalued maps

    Mat. Sb., 209:11 (2018),  69–102
  12. On the spectrum of a periodic magnetic Dirac operator

    Izv. IMI UdGU, 2016, no. 2(48),  3–21
  13. Recurrent and almost automorphic selections of multivalued mappings

    Izv. IMI UdGU, 2015, no. 2(46),  45–52
  14. Recurrent and almost recurrent multivalued maps and their selections. III

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2014, no. 4,  25–52
  15. On the spectrum of a two-dimensional generalized periodic Schrödinger operator. II

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2014, no. 2,  3–28
  16. On the spectrum of a two-dimensional generalized periodic Schrödinger operator

    Izv. IMI UdGU, 2013, no. 1(41),  78–95
  17. The uniform approximation of recurrent functions and almost recurrent functions

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2013, no. 4,  36–54
  18. Recurrent and almost recurrent multivalued maps and their selections. II

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2012, no. 4,  3–21
  19. On the spectrum of a periodic Schrödinger operator with potential in the Morrey space

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2012, no. 3,  25–47
  20. Recurrent and almost recurrent multivalued maps and their selections

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2011, no. 2,  19–51
  21. On a class of Weyl almost periodic selections of multivalued maps

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2009, no. 1,  24–45
  22. On almost periodic sections of multivalued maps

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2008, no. 2,  34–41
  23. On Besicovitch almost periodic selections of multivalued maps

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2008, no. 1,  97–120
  24. Absolute continuity of the spectrum of multidimensional periodic magnetic Dirac operator

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2008, no. 1,  61–96
  25. Weyl almost periodic selections of multivalued maps

    Izv. IMI UdGU, 2006, no. 3(37),  27–28
  26. On absolute continuity of the spectrum of three-dimensional periodic Dirac operator

    Izv. IMI UdGU, 2006, no. 1(35),  49–76
  27. On uniform approximation of Weyl and Besicovitch almost periodic functions

    Izv. IMI UdGU, 2006, no. 1(35),  33–48
  28. Weyl almost periodic selections of supports of measure-valued functions

    Sib. Èlektron. Mat. Izv., 3 (2006),  384–392
  29. The absence of eigenvalues in the spectrum of ageneralized two-dimensional periodic Dirac operator

    Algebra i Analiz, 17:3 (2005),  47–80
  30. On Weyl almost periodic measure-valued functions

    Izv. IMI UdGU, 2005, no. 1(31),  79–98
  31. On absence of eigenvalues in the spectra of two-dimensional periodic Dirac and Schrödinger operators

    Izv. IMI UdGU, 2004, no. 1(29),  49–84
  32. Uniform approximation of Stepanov almost periodic functions

    Izv. IMI UdGU, 2004, no. 1(29),  33–48
  33. Absolute Continuity of the Spectrum of a Periodic Schrödinger Operator

    Mat. Zametki, 73:1 (2003),  49–62
  34. The Spectrum of the Two-Dimensional Periodic Schrödinger Operator

    TMF, 134:3 (2003),  447–459
  35. On the spectra of two-dimensional periodic Schrödinger and Dirac operators

    Izv. IMI UdGU, 2002, no. 3(26),  3–98
  36. Absolute continuity of the spectrum of a periodic Dirac operator

    Differ. Uravn., 36:2 (2000),  233–240
  37. On almost periodic multivalued maps

    Mat. Zametki, 68:1 (2000),  82–90
  38. Almost periodic measure-valued functions

    Mat. Sb., 191:12 (2000),  27–50
  39. Spectrum of the periodic Dirac operator

    TMF, 124:1 (2000),  3–17
  40. On the spectrum of the two-dimensional periodic Dirac operator

    TMF, 118:1 (1999),  3–14
  41. On the uniform approximation of a function that is almost periodic in the sense of Stepanov

    Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 5,  10–18
  42. Measure-valued almost periodic functions

    Mat. Zametki, 61:1 (1997),  57–68
  43. Measure-valued almost periodic functions and almost periodic selections of multivalued maps

    Mat. Sb., 188:10 (1997),  3–24
  44. Resolvent estimates and the spectrum of the Dirac operator with periodical potential

    TMF, 103:1 (1995),  3–22
  45. On a pointwise maximum theorem in the almost periodic case

    Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 6,  50–59
  46. Estimates for the Poisson kernel for a tube domain over an acute cone

    Dokl. Akad. Nauk SSSR, 316:4 (1991),  805–807
  47. A comparison theorem on the uniform oscillation of a linear equation

    Differ. Uravn., 27:9 (1991),  1636–1637
  48. Effective sufficient conditions for the uniform oscillation of a linear differential equation

    Mat. Zametki, 49:3 (1991),  28–34
  49. Effective sufficient conditions for uniform local controllability

    Differ. Uravn., 26:4 (1990),  563–572
  50. Spectrum of the Dirac operator in $\mathbb R^n$ with periodic potential

    TMF, 85:1 (1990),  41–53
  51. Regularity of an acute open cone in $\mathbf{R}^n$

    Sibirsk. Mat. Zh., 26:2 (1985),  198–201


© Steklov Math. Inst. of RAS, 2026