|
|
Publications in Math-Net.Ru
-
On the spectrum of Landau Hamiltonian perturbed by periodic electric potential from Sobolev space $H^s_{\rm loc}(\mathbb R^2;\mathbb R),$ $s>0$
Chelyab. Fiz.-Mat. Zh., 10:1 (2025), 37–52
-
On the spectrum of the Landau Hamiltonian perturbed by a periodic smooth electric potential
TMF, 221:3 (2024), 654–667
-
On a class of Besicovitch almost periodic type selections of multivalued maps
Izv. IMI UdGU, 61 (2023), 57–75
-
On the spectrum of the Landau Hamiltonian perturbed by a periodic electric potential
Mat. Sb., 214:12 (2023), 76–105
-
On the spectrum of a multidimensional periodic magnetic Shrödinger operator with a singular electric potential
Izv. IMI UdGU, 58 (2021), 18–47
-
Absolute Continuity of the Spectrum of a Periodic 3D Magnetic Schrödinger Operator with Singular Electric Potential
Mat. Zametki, 110:4 (2021), 507–523
-
On the spectrum of a Landau Hamiltonian with a periodic electric potential $V\in L^p_{\mathrm {loc}}(\mathbb{R}^2)$,
$p>1$
Izv. IMI UdGU, 55 (2020), 42–59
-
Spectrum of the Landau Hamiltonian with a periodic electric potential
TMF, 202:1 (2020), 47–65
-
On the spectrum of a relativistic Landau Hamiltonian with a periodic electric potential
Izv. IMI UdGU, 54 (2019), 3–26
-
On the spectrum of a two-dimensional schrödinger operator with a homogeneous magnetic field and a periodic electric potential
Izv. IMI UdGU, 51 (2018), 3–41
-
Shift dynamical systems and measurable selectors of multivalued maps
Mat. Sb., 209:11 (2018), 69–102
-
On the spectrum of a periodic magnetic Dirac operator
Izv. IMI UdGU, 2016, no. 2(48), 3–21
-
Recurrent and almost automorphic selections of multivalued mappings
Izv. IMI UdGU, 2015, no. 2(46), 45–52
-
Recurrent and almost recurrent multivalued maps and their selections. III
Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2014, no. 4, 25–52
-
On the spectrum of a two-dimensional generalized periodic Schrödinger operator. II
Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2014, no. 2, 3–28
-
On the spectrum of a two-dimensional generalized periodic Schrödinger operator
Izv. IMI UdGU, 2013, no. 1(41), 78–95
-
The uniform approximation of recurrent functions and almost recurrent functions
Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2013, no. 4, 36–54
-
Recurrent and almost recurrent multivalued maps and their selections. II
Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2012, no. 4, 3–21
-
On the spectrum of a periodic Schrödinger operator with potential in the Morrey space
Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2012, no. 3, 25–47
-
Recurrent and almost recurrent multivalued maps and their selections
Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2011, no. 2, 19–51
-
On a class of Weyl almost periodic selections of multivalued maps
Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2009, no. 1, 24–45
-
On almost periodic sections of multivalued maps
Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2008, no. 2, 34–41
-
On Besicovitch almost periodic selections of multivalued maps
Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2008, no. 1, 97–120
-
Absolute continuity of the spectrum of multidimensional periodic magnetic Dirac operator
Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2008, no. 1, 61–96
-
Weyl almost periodic selections of multivalued maps
Izv. IMI UdGU, 2006, no. 3(37), 27–28
-
On absolute continuity of the spectrum of three-dimensional periodic Dirac operator
Izv. IMI UdGU, 2006, no. 1(35), 49–76
-
On uniform approximation of Weyl and Besicovitch almost periodic functions
Izv. IMI UdGU, 2006, no. 1(35), 33–48
-
Weyl almost periodic selections of supports of measure-valued functions
Sib. Èlektron. Mat. Izv., 3 (2006), 384–392
-
The absence of eigenvalues in the spectrum of ageneralized two-dimensional periodic Dirac operator
Algebra i Analiz, 17:3 (2005), 47–80
-
On Weyl almost periodic measure-valued functions
Izv. IMI UdGU, 2005, no. 1(31), 79–98
-
On absence of eigenvalues in the spectra of two-dimensional periodic Dirac and Schrödinger operators
Izv. IMI UdGU, 2004, no. 1(29), 49–84
-
Uniform approximation of Stepanov almost periodic functions
Izv. IMI UdGU, 2004, no. 1(29), 33–48
-
Absolute Continuity of the Spectrum of a Periodic Schrödinger Operator
Mat. Zametki, 73:1 (2003), 49–62
-
The Spectrum of the Two-Dimensional Periodic Schrödinger Operator
TMF, 134:3 (2003), 447–459
-
On the spectra of two-dimensional periodic Schrödinger and Dirac operators
Izv. IMI UdGU, 2002, no. 3(26), 3–98
-
Absolute continuity of the spectrum of a periodic Dirac operator
Differ. Uravn., 36:2 (2000), 233–240
-
On almost periodic multivalued maps
Mat. Zametki, 68:1 (2000), 82–90
-
Almost periodic measure-valued functions
Mat. Sb., 191:12 (2000), 27–50
-
Spectrum of the periodic Dirac operator
TMF, 124:1 (2000), 3–17
-
On the spectrum of the two-dimensional periodic Dirac operator
TMF, 118:1 (1999), 3–14
-
On the uniform approximation of a function that is almost periodic in the sense of Stepanov
Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 5, 10–18
-
Measure-valued almost periodic functions
Mat. Zametki, 61:1 (1997), 57–68
-
Measure-valued almost periodic functions and almost periodic selections of multivalued maps
Mat. Sb., 188:10 (1997), 3–24
-
Resolvent estimates and the spectrum of the Dirac operator with periodical potential
TMF, 103:1 (1995), 3–22
-
On a pointwise maximum theorem in the almost periodic case
Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 6, 50–59
-
Estimates for the Poisson kernel for a tube domain over an acute
cone
Dokl. Akad. Nauk SSSR, 316:4 (1991), 805–807
-
A comparison theorem on the uniform oscillation of a linear equation
Differ. Uravn., 27:9 (1991), 1636–1637
-
Effective sufficient conditions for the uniform oscillation of a linear differential equation
Mat. Zametki, 49:3 (1991), 28–34
-
Effective sufficient conditions for uniform local controllability
Differ. Uravn., 26:4 (1990), 563–572
-
Spectrum of the Dirac operator in $\mathbb R^n$ with periodic potential
TMF, 85:1 (1990), 41–53
-
Regularity of an acute open cone in $\mathbf{R}^n$
Sibirsk. Mat. Zh., 26:2 (1985), 198–201
© , 2026