RUS  ENG
Full version
PEOPLE

Geiler Vladimir Aronovich

Publications in Math-Net.Ru

  1. Approximation of a point perturbation on a Riemannian manifold

    TMF, 158:1 (2009),  49–57
  2. К задаче о двух точечных рассеивающих центрах на римановой поверхности

    Matem. Mod. Kraev. Zadachi, 3 (2006),  87–89
  3. Continuity and Asymptotic Behavior of Integral Kernels Related to Schrödinger Operators on Manifolds

    Mat. Zametki, 78:2 (2005),  314–316
  4. Spectral Properties of Schrodinger Operators on Decorated Graphs

    Mat. Zametki, 77:6 (2005),  932–935
  5. Явнорешаемая модель трехмерного массива квантовых точек

    Matem. Mod. Kraev. Zadachi, 3 (2004),  62–64
  6. Обобщеннные собственные функции непрерывного спектра для цепочки точечных потенциалов в наклонном магнитном поле

    Matem. Mod. Kraev. Zadachi, 3 (2004),  60–62
  7. Явнорешаемые модели примеси нулевого радиуса в квантовых точках и квантовых ямах

    Matem. Mod. Kraev. Zadachi, 3 (2004),  57–59
  8. Hall conductivity of minibands lying at the wings of Landau levels

    Pis'ma v Zh. Èksper. Teoret. Fiz., 77:11 (2003),  743–746
  9. Zero modes in a periodic system of Aharonov—Bohm solenoids

    Pis'ma v Zh. Èksper. Teoret. Fiz., 75:7 (2002),  425–427
  10. Gauge-periodic point perturbations on the Lobachevsky plane

    TMF, 119:3 (1999),  368–380
  11. Periodic Potentials for Which All Gaps Are Nontrivial

    Funktsional. Anal. i Prilozhen., 31:1 (1997),  67–70
  12. Модели двумерной электронной системы в параллельном магнитном поле

    Mat. Model., 9:10 (1997),  10
  13. Structure of the spectrum of the Schrodinger operator with magnetic field in a strip and infinite-gap potentials

    Mat. Sb., 188:5 (1997),  21–32
  14. The spectrum of a quasi-two-dimensional system in a parallel magnetic field

    Zh. Vychisl. Mat. Mat. Fiz., 37:2 (1997),  214–222
  15. On the structure of the spectrum of three-dimensional periodic Landau operators

    Algebra i Analiz, 8:3 (1996),  104–124
  16. Point perturbation-invariant solutions of the Schrödinger equation with a magnetic field

    Mat. Zametki, 60:5 (1996),  768–773
  17. Ballistic transport in nanostructures: explicitly solvable models

    TMF, 107:1 (1996),  12–20
  18. A harmonic oscillator with moving point perturbation

    Mat. Model., 7:5 (1995),  45
  19. Explicitly solvable quantum mechanics models of a charged particle in magnetic field

    Mat. Model., 7:5 (1995),  26–28
  20. On lacunae in the spectrum of the three-dimensional periodic Schrödinger operator with a magnetic field

    Uspekhi Mat. Nauk, 50:1(301) (1995),  195–196
  21. Potentials of zero radius and Carleman operators

    Sibirsk. Mat. Zh., 36:4 (1995),  828–841
  22. Spectrum of three-dimensional landau operator perturbed by a periodic point potential

    TMF, 103:2 (1995),  283–294
  23. The two-dimensional Schrödinger operator with a homogeneous magnetic field and its perturbations by periodic zero-range potentials

    Algebra i Analiz, 3:3 (1991),  1–48
  24. Anderson localization in the nondiscrete maryland model

    TMF, 70:2 (1987),  192–201
  25. Structure of the spectrum of a bloch electron in a magnetic field in a two-dimensional lattice

    TMF, 61:1 (1984),  140–149
  26. Spectrum of the bloch electron in a magnetic field in a two-dimensional lattice

    TMF, 58:3 (1984),  461–472
  27. Spaces of measurable vector-functions not containing the space $l^1$

    Mat. Zametki, 34:3 (1983),  425–430
  28. The second conjugate to a summing operator

    Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 12,  17–22
  29. The general principle of local reflexivity and its application to the theory of the duality of cones

    Sibirsk. Mat. Zh., 23:1 (1982),  32–43
  30. The general principle of local reflexivity and some of its applications in the theory of ordered spaces

    Dokl. Akad. Nauk SSSR, 254:1 (1980),  17–20
  31. Normed lattices

    Itogi Nauki i Tekhn. Ser. Mat. Anal., 18 (1980),  125–184
  32. The weak topology in vector lattices

    Izv. Vyssh. Uchebn. Zaved. Mat., 1979, no. 1,  3–14
  33. Some classes of projective locally convex spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1978, no. 3,  40–42
  34. Bornological methods in ordered topological vector spaces

    Sibirsk. Mat. Zh., 16:3 (1975),  501–509
  35. Projective objects in the category of locally convex spaces

    Funktsional. Anal. i Prilozhen., 6:2 (1972),  79–80
  36. Order completeness and disjoint completeness of linear partially ordered spaces

    Sibirsk. Mat. Zh., 13:1 (1972),  43–51
  37. Continuous selectors in uniform spaces

    Dokl. Akad. Nauk SSSR, 195:1 (1970),  17–19
  38. Certain ordered uniform function spaces

    Sibirsk. Mat. Zh., 11:4 (1970),  782–792
  39. Functors which are definable by reflexive $K$-spaces

    Dokl. Akad. Nauk SSSR, 188:1 (1969),  17–19


© Steklov Math. Inst. of RAS, 2026