RUS  ENG
Full version
PEOPLE

Levin Vladimir L'vovich

Publications in Math-Net.Ru

  1. Best approximation problems relating to Monge–Kantorovich duality

    Mat. Sb., 197:9 (2006),  103–114
  2. Optimality conditions and exact solutions to the two-dimensional Monge–Kantorovich problem

    Zap. Nauchn. Sem. POMI, 312 (2004),  150–164
  3. Optimality Conditions for Smooth Monge Solutions of the Monge–Kantorovich problem

    Funktsional. Anal. i Prilozhen., 36:2 (2002),  38–44
  4. Existence and Uniqueness of a Measure-Preserving Optimal Mapping in a General Monge–Kantorovich Problem

    Funktsional. Anal. i Prilozhen., 32:3 (1998),  79–82
  5. Semiconical sets, semi-homogeneous functions, and a new duality scheme in convex analysis

    Dokl. Akad. Nauk, 354:5 (1997),  597–599
  6. On duality theory for non-topological variants of the mass transfer problem

    Mat. Sb., 188:4 (1997),  95–126
  7. Duality theorems for a nontopological version of the mass transfer problem

    Dokl. Akad. Nauk, 350:5 (1996),  588–591
  8. Dual Representations of Convex Bodies and Their Polars

    Funktsional. Anal. i Prilozhen., 30:3 (1996),  79–81
  9. Exchange models with indivisible goods and the realizability of competitive equilibria in auction-type games

    Dokl. Akad. Nauk, 334:1 (1994),  16–19
  10. Measurable selections of multivalued mappings with a bi-analytic graph and $\sigma$-compact values

    Tr. Mosk. Mat. Obs., 54 (1992),  3–28
  11. A problem of complex analysis arising in optimal control theory

    Mat. Zametki, 47:5 (1990),  45–51
  12. A formula for the optimal value in the Monge–Kantorovich problem with a smooth cost function, and a characterization of cyclically monotone mappings

    Mat. Sb., 181:12 (1990),  1694–1709
  13. Measurable selections of multivalued mappings and the problem of mass transfer

    Dokl. Akad. Nauk SSSR, 292:5 (1987),  1048–1053
  14. Solution of a problem of convex analysis

    Uspekhi Mat. Nauk, 42:2(254) (1987),  235–236
  15. Functionally closed preorders and strong stochastic domination

    Dokl. Akad. Nauk SSSR, 283:1 (1985),  30–34
  16. The problem of mass transfer in a topological space and probability measures with given marginal measures on the product of two spaces

    Dokl. Akad. Nauk SSSR, 276:5 (1984),  1059–1064
  17. Lipschitz pre-orders and Lipschitz utility functions

    Uspekhi Mat. Nauk, 39:6(240) (1984),  199–200
  18. Continuous utility theorem for closed preorders on a metrizable $\sigma$-compact space

    Dokl. Akad. Nauk SSSR, 273:4 (1983),  800–804
  19. Measurable utility theorems for closed and lexicographic preference relations

    Dokl. Akad. Nauk SSSR, 270:3 (1983),  542–546
  20. Some applications of duality for the problem of translocation of masses with a lower semicontinuous cost function. Closed preferences and Choquet theory

    Dokl. Akad. Nauk SSSR, 260:2 (1981),  284–288
  21. Measurable selections of multivalued mappings into topological spaces and upper envelopes of Caratheodory integrands

    Dokl. Akad. Nauk SSSR, 252:3 (1980),  535–539
  22. The problem of mass transfer with a discontinuous cost function and a mass statement of the duality problem for convex extremal problems

    Uspekhi Mat. Nauk, 34:3(207) (1979),  3–68
  23. Measurable selections of multivalued mappings and projections of measurable sets

    Funktsional. Anal. i Prilozhen., 12:2 (1978),  40–45
  24. Borel cross sections of many-valued mappings

    Sibirsk. Mat. Zh., 19:3 (1978),  617–623
  25. Duality theorems in the Monge–Kantorovich problem

    Uspekhi Mat. Nauk, 32:3(195) (1977),  171–172
  26. On subdifferentials and continuous extensions with preservation of a measurable dependence on a parameter

    Funktsional. Anal. i Prilozhen., 10:3 (1976),  84–85
  27. Extremal problems with convex functionals that are lower semicontinuous with respect to convergence in measure

    Dokl. Akad. Nauk SSSR, 224:6 (1975),  1256–1259
  28. On the mass transfer problem

    Dokl. Akad. Nauk SSSR, 224:5 (1975),  1016–1019
  29. Convex integral functionals and the theory of lifting

    Uspekhi Mat. Nauk, 30:2(182) (1975),  115–178
  30. The Lebesgue decomposition for functionals on the vector-function space $L_{\mathfrak{X}}^\infty$

    Funktsional. Anal. i Prilozhen., 8:4 (1974),  48–53
  31. Subdifferentials of convex integral functionals and liftings that are the identity on subspaces of $\mathscr{L}^\infty$

    Dokl. Akad. Nauk SSSR, 211:5 (1973),  1046–1049
  32. On the duality of certain classes of linear operators that act between Banach spaces and Banach lattices

    Sibirsk. Mat. Zh., 14:3 (1973),  599–608
  33. Subdifferentials of convex functions

    Tr. Mosk. Mat. Obs., 26 (1972),  3–73
  34. Convexity of values of vector integrals, theorems on measurable choice and variational problems

    Uspekhi Mat. Nauk, 27:3(165) (1972),  21–77
  35. Subdifferentials of convex mappings and of composite functions

    Sibirsk. Mat. Zh., 13:6 (1972),  1295–1303
  36. A variational problem with functions of several variables and operator restrictions: The maximum principle and existence theorem

    Dokl. Akad. Nauk SSSR, 200:1 (1971),  9–12
  37. Extreme points of a certain set of measurable vector functions of several variables and convexity of the values of vector integrals

    Dokl. Akad. Nauk SSSR, 199:6 (1971),  1223–1226
  38. The subdifferential of a composite functional

    Dokl. Akad. Nauk SSSR, 194:2 (1970),  268–269
  39. Subdifferentials of convex functionals

    Uspekhi Mat. Nauk, 25:4(154) (1970),  183–184
  40. Tensor products and functors in categories of Banach spaces defined by $KB$-lineals

    Tr. Mosk. Mat. Obs., 20 (1969),  43–82
  41. Application of E. Helly's theorem to convex programming, problems of best approximation and related questions

    Mat. Sb. (N.S.), 79(121):2(6) (1969),  250–263
  42. Two classes of linear mappings which operate between Banach spaces and Banach lattices

    Sibirsk. Mat. Zh., 10:4 (1969),  903–909
  43. Some properties of support functionals

    Mat. Zametki, 4:6 (1968),  685–696
  44. Infinite dimensional analogs of a linear programming problem, and the saddle point theorem

    Uspekhi Mat. Nauk, 23:3(141) (1968),  181–182
  45. Tensor products and functors in Banach space categories defined by $KB$-lineals

    Dokl. Akad. Nauk SSSR, 163:5 (1965),  1058–1060
  46. Functors in categories of Banach spaces, defined by KV-spaces

    Dokl. Akad. Nauk SSSR, 162:2 (1965),  262–265
  47. The open mapping theorem for uniform spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1965, no. 2,  86–90
  48. Closed-graph theorems for uniform spaces

    Dokl. Akad. Nauk SSSR, 150:5 (1963),  981–983
  49. $B$-completeness conditions for ultrabarrelled and barrelled spaces

    Dokl. Akad. Nauk SSSR, 145:2 (1962),  273–275
  50. On a class of locally convex spaces

    Dokl. Akad. Nauk SSSR, 145:1 (1962),  35–37
  51. On a theorem of A. I. Plessner

    Uspekhi Mat. Nauk, 16:5(101) (1961),  177–179
  52. Non-degenerate spectra of locally convex spaces

    Dokl. Akad. Nauk SSSR, 135:1 (1960),  12–15

  53. Aleksei Alekseevich Milyutin (obituary)

    Uspekhi Mat. Nauk, 57:3(345) (2002),  137–140
  54. Correction to the paper: “The problem of mass transfer with a discontinuous cost function and a mass statement of the duality problem for convex extremal problems”

    Uspekhi Mat. Nauk, 35:2(212) (1980),  275


© Steklov Math. Inst. of RAS, 2026