RUS  ENG
Full version
PEOPLE

Borisov Vladimir Mikhailovich

Publications in Math-Net.Ru

  1. High-brightness laser-induced EUV source based on tin plasma with an unlimited lifetime of electrodes

    Kvantovaya Elektronika, 46:1 (2016),  81–87
  2. High-power, highly stable KrF laser with a 4-kHz pulse repetition rate

    Kvantovaya Elektronika, 45:8 (2015),  691–696
  3. Prototype of a high-power, high-energy industrial XeCl laser

    Kvantovaya Elektronika, 45:3 (2015),  200–203
  4. EUV light source with high brightness at 13.5 nm

    Kvantovaya Elektronika, 44:11 (2014),  1077–1082
  5. High-power EUV (13.5 nm) light source

    Kvantovaya Elektronika, 40:8 (2010),  720–726
  6. Laser-induced extreme UV radiation sources for manufacturing next-generation integrated circuits

    Kvantovaya Elektronika, 39:10 (2009),  967–972
  7. On ultimate pulse repetition rates of an XeF laser

    Kvantovaya Elektronika, 30:10 (2000),  881–883
  8. Development of high-power KrF lasers with a pulse repetition rate up to 5 kHz

    Kvantovaya Elektronika, 30:9 (2000),  783–786
  9. Efficient preionisation in XeCl lasers

    Kvantovaya Elektronika, 26:3 (1999),  204–208
  10. Powerful highly efficient KrF lamps excited by surface and barrier discharges

    Kvantovaya Elektronika, 25:4 (1998),  308–314
  11. Operational stability of a compact 600-W KrF laser

    Kvantovaya Elektronika, 25:2 (1998),  131–134
  12. Compact 600-W KrF laser

    Kvantovaya Elektronika, 25:2 (1998),  126–130
  13. Theoretical and experimental investigations of the growth of a large-scale instability in the discharge of an XeCl laser with UV preionisation

    Kvantovaya Elektronika, 24:1 (1997),  25–30
  14. Pumping rate of electric-discharge excimer lasers

    Kvantovaya Elektronika, 22:6 (1995),  533–536
  15. Effects limiting the average power of compact pulse-periodic KrF lasers

    Kvantovaya Elektronika, 22:5 (1995),  446–450
  16. Conditions for the excitation of a wide-aperture XeCl laser with an average output radiation power of 1 kW

    Kvantovaya Elektronika, 22:5 (1995),  433–435
  17. Pulse-periodic 600-W XeCl laser for industrial applications

    Kvantovaya Elektronika, 18:2 (1991),  183–185
  18. Interaction of pulse-periodic XeCl laser radiation with metals

    Kvantovaya Elektronika, 17:10 (1990),  1321–1326
  19. Pulse-periodic electric discharge XeCl laser

    Kvantovaya Elektronika, 17:2 (1990),  164–165
  20. Simple compact 10-J XeCl laser with double Blumlein pulse shaping line

    Kvantovaya Elektronika, 16:11 (1989),  2170–2172
  21. Conversion of λ = 308 nm radiation at pulse repetition frequencies up to 600 Hz by stimulated Raman scattering in compressed hydrogen

    Kvantovaya Elektronika, 15:10 (1988),  2030–2037
  22. Divergence of radiation from an electric-discharge XeCl laser operating in the pulse-periodic regime

    Kvantovaya Elektronika, 15:9 (1988),  1712–1719
  23. Wide-aperture electric discharge system with ultraviolet preionization for a pulse-periodic XeCl laser

    Kvantovaya Elektronika, 14:11 (1987),  2168–2174
  24. Wide-aperture electric-discharge XeCl laser with ultraviolet preionization and 20-J output energy

    Kvantovaya Elektronika, 14:8 (1987),  1542–1551
  25. Acoustic vibrations in the gas-discharge chamber of a fast-flow pulse-periodic laser

    Kvantovaya Elektronika, 14:6 (1987),  1206–1212
  26. Output energy evolution effects in a pulse-periodic XeCl excimer laser with an average power of ~400 W

    Kvantovaya Elektronika, 14:5 (1987),  936–942
  27. Electrode effects in a pulse-periodic excimer laser

    Kvantovaya Elektronika, 13:12 (1986),  2403–2407
  28. Instability of a uniform self-sustained discharge in excimer lasers

    TVT, 24:6 (1986),  1072–1078
  29. Relationship between ionization processes and the geometric parameters of a pulsed discharge in helium

    Kvantovaya Elektronika, 12:11 (1985),  2317–2323
  30. Electron kinetics and acoustically induced inhomogeneities of the energy deposited in a pulse-periodic XeCl laser

    Kvantovaya Elektronika, 12:8 (1985),  1641–1649
  31. Fluorescence of $KrF^*$ in a volume discharge at the prebreakdown ionization multiplication stage

    Kvantovaya Elektronika, 12:6 (1985),  1311–1313
  32. Laws governing the fluorescence of KrF* and XeF* excimer molecules in a volume discharge

    Kvantovaya Elektronika, 12:6 (1985),  1196–1203
  33. Stimulated Raman scattering of radiation from an electric-discharge pulse-periodic XeCI laser in compressed H2

    Kvantovaya Elektronika, 12:5 (1985),  1100–1102
  34. Influence of electrode processes on the constriction of a volume discharge in pulse-periodic lasers

    Kvantovaya Elektronika, 12:5 (1985),  971–977
  35. Establishment of a steady-state power level in a pulse-periodic excimer laser

    Kvantovaya Elektronika, 11:10 (1984),  2069–2073
  36. Increase in the repetition frequency of XeCl laser pulses to 1 kHz

    Kvantovaya Elektronika, 11:4 (1984),  827–829
  37. Study of the conditions of formation of a uniform high-current sliding discharge

    TVT, 22:4 (1984),  661–666
  38. Reasons for the fall in the output power of a pulse-periodic XeCl laser during its operation

    Kvantovaya Elektronika, 10:11 (1983),  2336–2340
  39. Pulse-periodic surface discharge

    Kvantovaya Elektronika, 10:10 (1983),  2110–2112
  40. Effect of λ =308 nm laser radiation on pyrolysis of 1,2-dichloroethane

    Kvantovaya Elektronika, 10:7 (1983),  1406–1412
  41. Hydrogen fluoride chemical laser initiated by a discharge creeping on the surface of a dielectric

    Kvantovaya Elektronika, 10:5 (1983),  1065–1067
  42. Characteristics of the pulse-periodic regime of excimer lasers

    Kvantovaya Elektronika, 10:3 (1983),  540–546
  43. A uniform high-current creeping discharge

    TVT, 21:5 (1983),  844–851
  44. Experimental investigation of the characteristics of a planar surface discharge

    Kvantovaya Elektronika, 9:11 (1982),  2159–2167
  45. Chemical HF laser initiated by an excimer XeCl laser

    Kvantovaya Elektronika, 9:2 (1982),  434–436
  46. Xenon fluoride laser emitting 2-nsec pulses of near-diffraction-limited divergence

    Kvantovaya Elektronika, 8:10 (1981),  2271–2274
  47. Optimization of the average power of pulsed-periodic KrF and XeCl excimer lasers

    Kvantovaya Elektronika, 8:9 (1981),  1909–1912
  48. Control of the divergence and spectrum of an XeCl laser

    Kvantovaya Elektronika, 8:9 (1981),  1861–1866
  49. Excimer electric-discharge laser with plasma electrodes

    Kvantovaya Elektronika, 8:1 (1981),  165–167
  50. Use of a discharge over a dielectric surface for preionization in excimer lasers

    Kvantovaya Elektronika, 8:1 (1981),  77–82
  51. Control of the spectral power of an $XeF$ laser

    Kvantovaya Elektronika, 7:6 (1980),  1375–1376
  52. Excimer pulse-periodic laser

    Kvantovaya Elektronika, 7:4 (1980),  896–898
  53. Changes in the characteristics of an electric-discharge XeF laser on increase in pressure

    Kvantovaya Elektronika, 5:10 (1978),  2285–2289
  54. Free-oscillation stimulated emission from an electricdischarge CO2 laser in the nanosecond range of pulse durations

    Kvantovaya Elektronika, 5:5 (1978),  1141–1143
  55. Photoionization in pulse CO2 laser

    Kvantovaya Elektronika, 4:4 (1977),  809–814
  56. Influence of preionization on the discharge characteristics of a CO2 laser

    Kvantovaya Elektronika, 3:11 (1976),  2460–2462
  57. Changes in the parameters of a photoionization CO2 laser on increase of pressure to 10 atm

    Kvantovaya Elektronika, 3:3 (1976),  651–653
  58. Attainment of a homogeneous discharge in a large-volume pulse CO2 laser

    Kvantovaya Elektronika, 2:9 (1975),  2086–2088
  59. Amplfication of λ = 9.6 and 10.6 μ radiation

    Kvantovaya Elektronika, 2:4 (1975),  840–842


© Steklov Math. Inst. of RAS, 2026