|
|
Publications in Math-Net.Ru
-
Absolute completeness of systems of exponentials on convex compact sets
Mat. Sb., 196:12 (2005), 85–98
-
Approximation theorem for a homogeneous
vector convolution equation
Mat. Sb., 195:9 (2004), 37–56
-
Spectral synthesis and analytic continuation
Uspekhi Mat. Nauk, 58:1(349) (2003), 33–112
-
Local description of closed submodules of a special module of entire functions of exponential type
Mat. Sb., 192:11 (2001), 35–54
-
Spectral synthesis and local description for several variables
Izv. RAN. Ser. Mat., 63:4 (1999), 101–130
-
The fundamental principle for invariant subspaces of analytic functions. III
Mat. Sb., 188:10 (1997), 25–68
-
The fundamental principle for invariant subspaces of analytic functions. II
Mat. Sb., 188:6 (1997), 57–98
-
The fundamental principle for invariant subspaces of analytic functions. I
Mat. Sb., 188:2 (1997), 25–56
-
Spectral synthesis in a complex domain for a differential operator with constant coefficients. IV: Synthesis
Mat. Sb., 183:8 (1992), 23–46
-
Spectral synthesis in a complex domain for a differential operator with constant coefficients. III: Ample submodules
Mat. Sb., 183:6 (1992), 55–86
-
Spectral synthesis in a complex domain for a differential operator with constant coefficients. II. The module method
Mat. Sb., 183:1 (1992), 3–19
-
Spectral synthesis in a complex domain for a differential operator with constant coefficients. I: A duality theorem
Mat. Sb., 182:11 (1991), 1559–1587
-
Abstract methods for a local description of closed submodules of analytic functions
Mat. Sb., 181:12 (1990), 1640–1658
-
Spectral synthesis for the multiple differentiation operator
Dokl. Akad. Nauk SSSR, 307:1 (1989), 24–27
-
An interpretation of the Beurling–Malliavin theorem on the radius of completeness
Mat. Sb., 180:3 (1989), 397–423
-
On absolute completeness of systems of exponentials on a closed interval
Mat. Sb. (N.S.), 131(173):3(11) (1986), 309–322
-
For every invariant subspace admitting spectral synthesis, there exists a method of approximation
Sibirsk. Mat. Zh., 22:3 (1981), 74–90
-
Spectral synthesis on systems of convex domains. Extension of the synthesis
Mat. Sb. (N.S.), 112(154):1(5) (1980), 94–114
-
Spectral synthesis on systems of unbounded convex domains
Mat. Sb. (N.S.), 111(153):3 (1980), 384–401
-
Spectral synthesis of analytic functions on systems of convex domains
Mat. Sb. (N.S.), 111(153):1 (1980), 3–41
-
Local description of closed ideals and submodules of analytic functions of one variable. II
Izv. Akad. Nauk SSSR Ser. Mat., 43:2 (1979), 309–341
-
Local description of closed ideals and submodules of analytic functions of one variable. I
Izv. Akad. Nauk SSSR Ser. Mat., 43:1 (1979), 44–66
-
A geometric lemma useful in the theory of entire functions and Levinson-type theorems
Mat. Zametki, 24:4 (1978), 531–546
-
5.5. Local description of closed submodules and the problem of supersaturation
Zap. Nauchn. Sem. LOMI, 81 (1978), 133–136
-
Estimates for the subharmonic difference of subharmonic functions. II
Mat. Sb. (N.S.), 103(145):1(5) (1977), 69–111
-
An estimate for the subharmonic difference of subharmonic functions. I
Mat. Sb. (N.S.), 102(144):2 (1977), 216–247
-
Methods for the approximation of functions belonging to invariant subspaces by Dirichlet polynomials
Sibirsk. Mat. Zh., 16:5 (1975), 1020–1030
-
Invariant subspaces of analytic functions. Dirichlet coefficients
Funktsional. Anal. i Prilozhen., 7:4 (1973), 38–43
-
Invariant subspaces of analytic functions. Analytic continuation
Izv. Akad. Nauk SSSR Ser. Mat., 37:4 (1973), 931–945
-
Invariant subspaces of analytic functions. III. On the extension of spectral synthesis
Mat. Sb. (N.S.), 88(130):3(7) (1972), 331–352
-
Invariant subspaces of analytic functions. II. Spectral synthesis of convex domains
Mat. Sb. (N.S.), 88(130):1(5) (1972), 3–30
-
Invariant subspaces of analytic functions. I. Spectral analysis on convex regions
Mat. Sb. (N.S.), 87(129):4 (1972), 459–489
-
A homogeneous equation of convolution type on convex domains
Dokl. Akad. Nauk SSSR, 197:1 (1971), 29–31
-
Optimal finite control with quality quadratic criterion
Avtomat. i Telemekh., 1968, no. 9, 43–52
-
Closed ideals in locally convex algebras of entire functions. II
Izv. Akad. Nauk SSSR Ser. Mat., 32:5 (1968), 1024–1032
-
Systems of functions with the dual orthogonality property
Mat. Zametki, 4:5 (1968), 551–556
-
Closed ideals in locally convex algebras of entire functions. Algebras of minimal type
Sibirsk. Mat. Zh., 9:1 (1968), 77–96
-
Closed ideals in locally convex algebras of entire functions
Izv. Akad. Nauk SSSR Ser. Mat., 31:1 (1967), 37–60
-
Homogeneity properties of entire functions of finite order
Mat. Sb. (N.S.), 72(114):3 (1967), 412–419
-
Closed ideals in a locally convex algebra of entire functions with an arbitrary majorant of growth
Dokl. Akad. Nauk SSSR, 170:5 (1966), 1018–1019
-
Comparison of entire functions of integral order by the distribution of their roots
Mat. Sb. (N.S.), 71(113):3 (1966), 405–419
-
Comparison of entire functions of finite order by means of the distribution of their roots
Mat. Sb. (N.S.), 70(112):2 (1966), 198–230
-
Convergence of Dirichlet polynomials
Sibirsk. Mat. Zh., 7:5 (1966), 1039–1058
-
On lower bounds for entire functions of finite order and on the convergence of Dirichlet polynomials
Dokl. Akad. Nauk SSSR, 162:5 (1965), 995–996
-
Completeness in a space of complex valued functions determined by the behavior of the modulus
Mat. Sb. (N.S.), 68(110):1 (1965), 26–57
-
Lower bound for entire functions of finite order
Sibirsk. Mat. Zh., 6:4 (1965), 840–861
-
On the completeness of systems of functions of the form
$\biggl\{\dfrac{\partial^{n_k}}{\partial h^{n_k}}\,F(z,h_k)\biggr\}$
Mat. Sb. (N.S.), 56(98):2 (1962), 147–172
-
Seminar dedicated to the memory of A. F. Leont'ev
Uspekhi Mat. Nauk, 48:6(294) (1993), 177
-
Letter to the Editor
Mat. Sb. (N.S.), 108(150):4 (1979), 636
© , 2026