RUS  ENG
Full version
PEOPLE

Krasichkov-Ternovskii Igor Fedorovich

Publications in Math-Net.Ru

  1. Absolute completeness of systems of exponentials on convex compact sets

    Mat. Sb., 196:12 (2005),  85–98
  2. Approximation theorem for a homogeneous vector convolution equation

    Mat. Sb., 195:9 (2004),  37–56
  3. Spectral synthesis and analytic continuation

    Uspekhi Mat. Nauk, 58:1(349) (2003),  33–112
  4. Local description of closed submodules of a special module of entire functions of exponential type

    Mat. Sb., 192:11 (2001),  35–54
  5. Spectral synthesis and local description for several variables

    Izv. RAN. Ser. Mat., 63:4 (1999),  101–130
  6. The fundamental principle for invariant subspaces of analytic functions. III

    Mat. Sb., 188:10 (1997),  25–68
  7. The fundamental principle for invariant subspaces of analytic functions. II

    Mat. Sb., 188:6 (1997),  57–98
  8. The fundamental principle for invariant subspaces of analytic functions. I

    Mat. Sb., 188:2 (1997),  25–56
  9. Spectral synthesis in a complex domain for a differential operator with constant coefficients. IV: Synthesis

    Mat. Sb., 183:8 (1992),  23–46
  10. Spectral synthesis in a complex domain for a differential operator with constant coefficients. III: Ample submodules

    Mat. Sb., 183:6 (1992),  55–86
  11. Spectral synthesis in a complex domain for a differential operator with constant coefficients. II. The module method

    Mat. Sb., 183:1 (1992),  3–19
  12. Spectral synthesis in a complex domain for a differential operator with constant coefficients. I: A duality theorem

    Mat. Sb., 182:11 (1991),  1559–1587
  13. Abstract methods for a local description of closed submodules of analytic functions

    Mat. Sb., 181:12 (1990),  1640–1658
  14. Spectral synthesis for the multiple differentiation operator

    Dokl. Akad. Nauk SSSR, 307:1 (1989),  24–27
  15. An interpretation of the Beurling–Malliavin theorem on the radius of completeness

    Mat. Sb., 180:3 (1989),  397–423
  16. On absolute completeness of systems of exponentials on a closed interval

    Mat. Sb. (N.S.), 131(173):3(11) (1986),  309–322
  17. For every invariant subspace admitting spectral synthesis, there exists a method of approximation

    Sibirsk. Mat. Zh., 22:3 (1981),  74–90
  18. Spectral synthesis on systems of convex domains. Extension of the synthesis

    Mat. Sb. (N.S.), 112(154):1(5) (1980),  94–114
  19. Spectral synthesis on systems of unbounded convex domains

    Mat. Sb. (N.S.), 111(153):3 (1980),  384–401
  20. Spectral synthesis of analytic functions on systems of convex domains

    Mat. Sb. (N.S.), 111(153):1 (1980),  3–41
  21. Local description of closed ideals and submodules of analytic functions of one variable. II

    Izv. Akad. Nauk SSSR Ser. Mat., 43:2 (1979),  309–341
  22. Local description of closed ideals and submodules of analytic functions of one variable. I

    Izv. Akad. Nauk SSSR Ser. Mat., 43:1 (1979),  44–66
  23. A geometric lemma useful in the theory of entire functions and Levinson-type theorems

    Mat. Zametki, 24:4 (1978),  531–546
  24. 5.5. Local description of closed submodules and the problem of supersaturation

    Zap. Nauchn. Sem. LOMI, 81 (1978),  133–136
  25. Estimates for the subharmonic difference of subharmonic functions. II

    Mat. Sb. (N.S.), 103(145):1(5) (1977),  69–111
  26. An estimate for the subharmonic difference of subharmonic functions. I

    Mat. Sb. (N.S.), 102(144):2 (1977),  216–247
  27. Methods for the approximation of functions belonging to invariant subspaces by Dirichlet polynomials

    Sibirsk. Mat. Zh., 16:5 (1975),  1020–1030
  28. Invariant subspaces of analytic functions. Dirichlet coefficients

    Funktsional. Anal. i Prilozhen., 7:4 (1973),  38–43
  29. Invariant subspaces of analytic functions. Analytic continuation

    Izv. Akad. Nauk SSSR Ser. Mat., 37:4 (1973),  931–945
  30. Invariant subspaces of analytic functions. III. On the extension of spectral synthesis

    Mat. Sb. (N.S.), 88(130):3(7) (1972),  331–352
  31. Invariant subspaces of analytic functions. II. Spectral synthesis of convex domains

    Mat. Sb. (N.S.), 88(130):1(5) (1972),  3–30
  32. Invariant subspaces of analytic functions. I. Spectral analysis on convex regions

    Mat. Sb. (N.S.), 87(129):4 (1972),  459–489
  33. A homogeneous equation of convolution type on convex domains

    Dokl. Akad. Nauk SSSR, 197:1 (1971),  29–31
  34. Optimal finite control with quality quadratic criterion

    Avtomat. i Telemekh., 1968, no. 9,  43–52
  35. Closed ideals in locally convex algebras of entire functions. II

    Izv. Akad. Nauk SSSR Ser. Mat., 32:5 (1968),  1024–1032
  36. Systems of functions with the dual orthogonality property

    Mat. Zametki, 4:5 (1968),  551–556
  37. Closed ideals in locally convex algebras of entire functions. Algebras of minimal type

    Sibirsk. Mat. Zh., 9:1 (1968),  77–96
  38. Closed ideals in locally convex algebras of entire functions

    Izv. Akad. Nauk SSSR Ser. Mat., 31:1 (1967),  37–60
  39. Homogeneity properties of entire functions of finite order

    Mat. Sb. (N.S.), 72(114):3 (1967),  412–419
  40. Closed ideals in a locally convex algebra of entire functions with an arbitrary majorant of growth

    Dokl. Akad. Nauk SSSR, 170:5 (1966),  1018–1019
  41. Comparison of entire functions of integral order by the distribution of their roots

    Mat. Sb. (N.S.), 71(113):3 (1966),  405–419
  42. Comparison of entire functions of finite order by means of the distribution of their roots

    Mat. Sb. (N.S.), 70(112):2 (1966),  198–230
  43. Convergence of Dirichlet polynomials

    Sibirsk. Mat. Zh., 7:5 (1966),  1039–1058
  44. On lower bounds for entire functions of finite order and on the convergence of Dirichlet polynomials

    Dokl. Akad. Nauk SSSR, 162:5 (1965),  995–996
  45. Completeness in a space of complex valued functions determined by the behavior of the modulus

    Mat. Sb. (N.S.), 68(110):1 (1965),  26–57
  46. Lower bound for entire functions of finite order

    Sibirsk. Mat. Zh., 6:4 (1965),  840–861
  47. On the completeness of systems of functions of the form $\biggl\{\dfrac{\partial^{n_k}}{\partial h^{n_k}}\,F(z,h_k)\biggr\}$

    Mat. Sb. (N.S.), 56(98):2 (1962),  147–172

  48. Seminar dedicated to the memory of A. F. Leont'ev

    Uspekhi Mat. Nauk, 48:6(294) (1993),  177
  49. Letter to the Editor

    Mat. Sb. (N.S.), 108(150):4 (1979),  636


© Steklov Math. Inst. of RAS, 2026