RUS  ENG
Full version
PEOPLE

Velikanov Sergei Dmitrievich

Publications in Math-Net.Ru

  1. Efficient operation of a room-temperature Fe2+ : ZnSe laser pumped by a passively Q-switched Er : YAG laser

    Kvantovaya Elektronika, 47:9 (2017),  831–834
  2. Repetitively pulsed Fe : ZnSe laser with an average output power of 20 W at room temperature of the polycrystalline active element

    Kvantovaya Elektronika, 47:4 (2017),  303–307
  3. Room-temperature Fe2+ : ZnS single crystal laser pumped by an electric-discharge HF laser

    Kvantovaya Elektronika, 46:9 (2016),  769–771
  4. Holmium laser with an acousto-optic paratellurite filter

    Kvantovaya Elektronika, 46:8 (2016),  682–684
  5. Room-temperature 1.2-J Fe2+:ZnSe laser

    Kvantovaya Elektronika, 46:1 (2016),  11–12
  6. High-power pulse repetitive HF(DF) laser with a solid-state pump generator

    Kvantovaya Elektronika, 45:11 (2015),  989–992
  7. Investigation of Fe:ZnSe laser in pulsed and repetitively pulsed regimes

    Kvantovaya Elektronika, 45:1 (2015),  1–7
  8. Fe2+ : ZnSe laser pumped by a nonchain electric-discharge HF laser at room temperature

    Kvantovaya Elektronika, 44:2 (2014),  141–144
  9. Influence of gas temperature on self-sustained volume discharge characteristics in working mixtures of a repetitively pulsed ÑOIL

    Kvantovaya Elektronika, 44:2 (2014),  138–140
  10. Discharge formation systems for generating atomic iodine in a pulse-periodic oxygen–iodine laser

    Kvantovaya Elektronika, 44:1 (2014),  89–93
  11. Solid-state laser-pumped high-power electric-discharge HF laser

    Kvantovaya Elektronika, 40:5 (2010),  393–396
  12. Efficient emission at 1908 nm in a diode-pumped Tm:YLF laser

    Kvantovaya Elektronika, 39:5 (2009),  410–414
  13. Test bench for studying the outlook for industrial applications of an oxygen–iodine laser

    Kvantovaya Elektronika, 37:7 (2007),  601–602
  14. Repetitively pulsed DF laser with a pulse repetition rate up to 1200 Hz and an average output power of ~25 W

    Kvantovaya Elektronika, 31:11 (2001),  957–961
  15. A 400-W repetitively pulsed DF laser

    Kvantovaya Elektronika, 31:4 (2001),  290–292
  16. Electric-discharge DF laser with a pulsed energy of the order of 10 J

    Kvantovaya Elektronika, 30:3 (2000),  225–228
  17. Characteristic features of the formation of a volume discharge in an HF(DF) laser with blade-shaped electrodes

    Kvantovaya Elektronika, 25:10 (1998),  925–926
  18. Laser amplifier based on a chain chemical reaction initiated by powerful light sources

    Kvantovaya Elektronika, 25:9 (1998),  783–785
  19. Measurement of the coefficients of reflection of DF laser radiation from topographic retroreflectors

    Kvantovaya Elektronika, 25:2 (1998),  181–182
  20. Use of a DF laser in the analysis of atmospheric hydrocarbons

    Kvantovaya Elektronika, 24:3 (1997),  279–282
  21. Physical aspects of the operation of HF and DF lasers with a closed active-medium replacement cycle

    Kvantovaya Elektronika, 24:1 (1997),  11–14
  22. Operation of a chemical laser as an amplifier

    Kvantovaya Elektronika, 23:8 (1996),  684–688
  23. Pulsed chemical laser with a reaction initiation by high power light sources

    Kvantovaya Elektronika, 23:4 (1996),  323–325
  24. Pulse-periodic chemical hydrogen fluoride laser emitting pulses of 6 kJ energy

    Kvantovaya Elektronika, 23:2 (1996),  119–121
  25. Pulsed chemical laser with an electron-beam-initiated reaction

    Kvantovaya Elektronika, 23:1 (1996),  25–28
  26. Pulse-periodic electric-discharge DF laser with pulse repetition frequency up to 50 Hz and energy per pulse ~1 J

    Kvantovaya Elektronika, 22:7 (1995),  645–648
  27. Influence of gasdynamic perturbations on the emission parameters of hydrogen fluoride lasers

    Kvantovaya Elektronika, 22:2 (1995),  127–128
  28. Propagation of combustion in mixtures of pulse-periodic chemical lasers based on the reaction of fluorine with hydrogen

    Kvantovaya Elektronika, 22:2 (1995),  123–126
  29. Conditions for the suppression of detonation in working mixtures of pulse-periodic chemical lasers based on the reaction of fluorine with hydrogen

    Kvantovaya Elektronika, 22:2 (1995),  120–122
  30. Second harmonic generation from DF laser radiation in ZnGeP2

    Kvantovaya Elektronika, 19:11 (1992),  1110
  31. Wide-band chemical laser utilizing both HF* and DF* excited molecules

    Kvantovaya Elektronika, 18:2 (1991),  186–188
  32. On the transmission of electron beam through electronegative gases

    Dokl. Akad. Nauk SSSR, 287:3 (1986),  614–618
  33. Electric-discharge HF laser with an output energy in excess of 20 J and a high technical efficiency

    Kvantovaya Elektronika, 11:11 (1984),  2381–2383
  34. Deuterium fluoride chemical laser with diffraction-limited beam divergence

    Kvantovaya Elektronika, 8:6 (1981),  1208–1213
  35. Investigation of spectral and time characteristics of a HF chemical laser

    Kvantovaya Elektronika, 4:2 (1977),  339–344
  36. A method of determination of spectral width lower limit of transition luminescence line of an iodine atom $5^2P_{1/2}$$5^2P_{3/2}$ in the photodissociation laser

    Dokl. Akad. Nauk SSSR, 192:3 (1970),  528–530

  37. In Memory of Gennadii Alekseevich Kirillov (25 July 1933 – 22 September 2013)

    Kvantovaya Elektronika, 43:10 (2013),  988
  38. Mikhail Alexandrovich Rotinyan

    Kvantovaya Elektronika, 38:3 (2008),  298


© Steklov Math. Inst. of RAS, 2026