RUS  ENG
Full version
PEOPLE

Aminov Yuriy Akhmetovich

Publications in Math-Net.Ru

  1. Existence of polynomial solutions of degree 4 of the Monge-Ampère equation. Large deflections of thin plates

    Mat. Sb., 214:8 (2023),  3–17
  2. On isometric immersions of the Lobachevsky plane into 4-dimensional Euclidean space with flat normal connection

    Zh. Mat. Fiz. Anal. Geom., 16:3 (2020),  208–220
  3. The action of the Monge-Ampère operator on polynomials in the plane and its fixed points of polynomial type

    Mat. Sb., 210:12 (2019),  3–30
  4. Polynomial solutions of the Monge-Ampère equation

    Mat. Sb., 205:11 (2014),  3–38
  5. Conditions on a Surface $F^2\subset E^n$ to lie in $E^4$

    Zh. Mat. Fiz. Anal. Geom., 9:2 (2013),  127–149
  6. Conditions for a Two-Dimensional Surface in $E^5$ to Be Contained in a Hypersphere or a Hyperplane

    Mat. Zametki, 94:2 (2013),  163–174
  7. The geometry of electron wave functions

    Mat. Sb., 204:2 (2013),  3–30
  8. On the solution of the Monge–Ampere equation $Z_{xx}Z_{yy}-Z_{xy}^{2}=f(x,y)$ with quadratic right side

    Zh. Mat. Fiz. Anal. Geom., 7:3 (2011),  203–211
  9. Extrinsic geometric properties of the Rozendorn surface, an isometric immersion of the Lobachevskiǐ plane in $E^5$

    Mat. Sb., 200:11 (2009),  3–14
  10. Generalization of the H. A. Schwarz theorem on stability of minimal surfaces

    Zh. Mat. Fiz. Anal. Geom., 3:4 (2007),  399–410
  11. Physical interpretation of certain ruled surfaces in $E^3$ by means of motion of point charge

    Mat. Sb., 197:12 (2006),  3–10
  12. Families of submanifolds of constant negative curvature of many-dimensional Euclidean space

    Mat. Sb., 197:2 (2006),  3–16
  13. Isometric immersions of domains of the Lobachevskii space into spheres and Euclidean spaces, and a geometric interpretation of a spectral parameter

    Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 10,  19–32
  14. On the reconstruction of a two-dimensional closed surface in $E^4$ from a given closed Grassmann image

    Mat. Fiz. Anal. Geom., 11:1 (2004),  3–24
  15. Gaussian torsion of a 2-dimensional surface defined implicitly in 4-dimensional Euclidean space

    Mat. Sb., 195:11 (2004),  3–12
  16. On the regularity of the Bäcklund transformation for pseudospherical surfaces

    Mat. Fiz. Anal. Geom., 10:4 (2003),  469–480
  17. On special isometric immersions of regions of Lobachevsky space into Euclidean space

    Mat. Fiz. Anal. Geom., 10:1 (2003),  3–11
  18. The expression of volume of asymptotic parallelepiped

    Mat. Fiz. Anal. Geom., 9:4 (2002),  519–532
  19. An Expression for the Riemann Tensor of a Submanifold Given by a System of Equations in a Riemannian Space

    Mat. Zametki, 72:5 (2002),  643–648
  20. On the Gauss curvature of closed surfaces in $E^3$ and $E^4$

    Mat. Fiz. Anal. Geom., 8:1 (2001),  3–16
  21. On a problem of Hopf

    Mat. Zametki, 68:4 (2000),  637–640
  22. An example of isometric immersion of a domain of 3-dimensional Lobachevsky space into $E^6$ with a section as the Veronese surface

    Mat. Fiz. Anal. Geom., 6:1/2 (1999),  3–9
  23. Expression of the Riemann tensor of a submanifold defined by a system of equations in Euclidean space

    Mat. Zametki, 66:1 (1999),  3–9
  24. Closed surfaces in $E^4$ with nonvanishing Whitney's invariant

    Mat. Fiz. Anal. Geom., 5:3/4 (1998),  139–148
  25. Geometry of the Grassmann image of a local isometric immersion of Lobachevskii $n$-dimensional isometric immersion of Lobachevskii $n$-dimensional

    Mat. Sb., 188:1 (1997),  3–28
  26. Isometric immersions of domains of Lobachevsky space in Euclidean spaces

    Zap. Nauchn. Sem. POMI, 234 (1996),  11–16
  27. On toroidal submanifolds of constant negative curvature

    Mat. Fiz. Anal. Geom., 2:3 (1995),  275–283
  28. On the embedding of two-dimensional metrics in the Euclidean space $E^4$

    Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 3,  3–9
  29. Surfaces in $E^4$ with a Gaussian curvature coinciding with a Gaussian torsion up to the sign

    Mat. Zametki, 56:6 (1994),  3–9
  30. Three-dimensional saddle hypersurfaces with a constant second symmetric function of principal curvatures

    Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 6,  15–20
  31. Asymptotic curves of submanifolds

    Mat. Zametki, 52:5 (1992),  3–12
  32. On the nonbendability of closed surfaces of trigonometric type

    Mat. Sb., 181:12 (1990),  1710–1720
  33. Isometric immersions, with flat normal connection, of domains of $n$-dimensional Lobachevsky space into Euclidean spaces. A model of a gauge field

    Mat. Sb. (N.S.), 137(179):3(11) (1988),  275–299
  34. Closed curves that are trigonometric polynomials in the arc length

    Trudy Inst. Mat. Sib. Otd. AN SSSR, 9 (1987),  25–34
  35. Condition of holonomicity of characteristic directions of a submanifold

    Mat. Zametki, 41:4 (1987),  543–548
  36. A multidimensional generalization of the Gauss–Bonnet formula for vector fields in Euclidean space

    Mat. Sb. (N.S.), 134(176):1(9) (1987),  135–140
  37. Conditions for polygonal lines and polyhedra in $E^3$ to be closed

    Mat. Zametki, 38:1 (1985),  132–141
  38. Reconstruction of a two-dimensional surface in $n$-dimensional Euclidean space from its Grassman image

    Mat. Zametki, 36:2 (1984),  223–228
  39. Isometric immersions of domains of three-dimensional Lobachevskii space in five-dimensional Euclidean space, and the motion of a rigid body

    Mat. Sb. (N.S.), 122(164):1(9) (1983),  12–30
  40. A multidimensional analog of the "sine-Gordon" equation and the rigid body motion

    Dokl. Akad. Nauk SSSR, 264:5 (1982),  1113–1116
  41. Imbedding problems: geometric and topological aspects

    Itogi Nauki i Tekhniki. Ser. Probl. Geom., 13 (1982),  119–156
  42. Defining a surface in 4-dimensional Euclidean space by means of its Grassmann image

    Mat. Sb. (N.S.), 117(159):2 (1982),  147–160
  43. Isometric immersions of domains of $n$-dimensional Lobachevsky space in $(2n-1)$-dimensional Euclidean space

    Mat. Sb. (N.S.), 111(153):3 (1980),  402–433
  44. On the immersion of domains of $n$-dimensional Lobacevskii space in $(2n-1)$-dimensional euclidean space

    Dokl. Akad. Nauk SSSR, 236:3 (1977),  521–524
  45. On the instability of a minimal surface in an $n$-dimensional Riemannian space of positive curvature

    Mat. Sb. (N.S.), 100(142):3(7) (1976),  400–419
  46. On the problem of stability of a minimal surface in a Riemannian space of positive curvature

    Dokl. Akad. Nauk SSSR, 224:4 (1975),  745–747
  47. The exterior diameter of an immersed Riemannian manifold

    Mat. Sb. (N.S.), 92(134):3(11) (1973),  456–460
  48. An energy condition for the existence of a rotation

    Mat. Sb. (N.S.), 86(128):2(10) (1971),  325–334
  49. Sources of curvature of a vector field

    Mat. Sb. (N.S.), 80(122):2(10) (1969),  210–224
  50. Divergence properties of the curvatures of a vector field and of a family of surfaces

    Mat. Zametki, 3:1 (1968),  103–111
  51. $n$-dimensional analogues of Bernstein's integral formula

    Mat. Sb. (N.S.), 75(117):3 (1968),  375–399
  52. The metric of approximately minimal surfaces

    Sibirsk. Mat. Zh., 8:3 (1967),  483–493

  53. Idzhad Khakovich Sabitov (on his 70th birthday)

    Uspekhi Mat. Nauk, 63:6(384) (2008),  183–186
  54. Errata

    Mat. Sb., 198:5 (2007),  160
  55. Letter to the Editor

    Mat. Zametki, 74:5 (2003),  800
  56. Actual problems in the Geometry of Submanifolds (November 12–24, 2001, Warsaw)

    Mat. Fiz. Anal. Geom., 8:4 (2001),  455
  57. Поправки к статье “Многомерный аналог уравнения ‘`синус Гордона” и движение твердого тела’' (ДАН, т. 264, № 5, 1982 г.)

    Dokl. Akad. Nauk SSSR, 272:1 (1983),  10
  58. Nikolai Vladimirovich Efimov (on his seventieth birthday)

    Uspekhi Mat. Nauk, 36:3(219) (1981),  233–238
  59. Letter to the Editor

    Mat. Sb. (N.S.), 112(154):3(7) (1980),  472


© Steklov Math. Inst. of RAS, 2026