RUS  ENG
Full version
PEOPLE

Oskolkov Vladimir Aleksandrovich

Publications in Math-Net.Ru

  1. Growth of entire functions represented by Dirichlet series

    Mat. Sb., 187:10 (1996),  129–144
  2. The Hardy–Littlewood problem for regular and uniformly distributed number sequences

    Izv. RAN. Ser. Mat., 58:2 (1994),  153–166
  3. On the basis property of certain polynomial systems in spaces of entire functions of exponential type

    Izv. RAN. Ser. Mat., 57:3 (1993),  179–191
  4. On some questions in the theory of entire functions

    Mat. Sb., 184:1 (1993),  129–148
  5. Hardy–Littlewood problems on the uniform distribution of arithmetic progressions

    Izv. Akad. Nauk SSSR Ser. Mat., 54:1 (1990),  159–172
  6. Criterion for quasi-power basis and its applications

    Mat. Zametki, 48:6 (1990),  72–78
  7. On the completeness and quasipower basis property of systems $\{z^nf(\lambda_nz)\}$

    Mat. Sb., 180:3 (1989),  375–384
  8. Necessary and sufficient conditions for quasipower basicity of certain systems of regular functions

    Mat. Zametki, 29:2 (1981),  235–242
  9. Basicity of certain systems of functions

    Mat. Zametki, 26:3 (1979),  389–398
  10. Some bases in spaces of regular functions and their application to interpolation

    Mat. Sb. (N.S.), 105(147):2 (1978),  238–260
  11. The growth of entire functions that are represented by Newton series. A theorem on whether a certain system of functions forms a basis

    Sibirsk. Mat. Zh., 19:1 (1978),  122–141
  12. On the growth of entire functions represented by regularly convergent function series

    Mat. Sb. (N.S.), 100(142):2(6) (1976),  312–334
  13. A method for estimating interpolating polynomials

    Mat. Zametki, 17:4 (1975),  555–561
  14. The Abel–Goncharov problem for entire functions of infinite order

    Sibirsk. Mat. Zh., 16:1 (1975),  75–85
  15. On estimates for Goncharov polynomials

    Mat. Sb. (N.S.), 92(134):1(9) (1973),  55–59


© Steklov Math. Inst. of RAS, 2026