RUS  ENG
Full version
PEOPLE

Olshanetsky Mikhail Aronovich

Publications in Math-Net.Ru

  1. Integrable deformations of principal chiral model from solutions of associative Yang–Baxter equation

    Izv. RAN. Ser. Mat., 90:1 (2026),  112–148
  2. Families of Kuramoto models and bounded symmetric domains

    TMF, 225:1 (2025),  115–137
  3. 2D Integrable systems, 4D Chern–Simons theory and affine Higgs bundles

    Eur. Phys. J. C, Part. Fields, 82 (2022),  635–14
  4. Generalizations of parabolic Higgs bundles, real structures, and integrability

    J. Math. Phys., 62:10 (2021), 103502, 28 pp.
  5. Integrable extensions of classical elliptic integrable systems

    TMF, 208:2 (2021),  245–260
  6. Odd supersymmetric Kronecker elliptic function and Yang–Baxter equations

    J. Math. Phys., 61 (2020), 103504, 9 pp.
  7. Odd supersymmetrization of elliptic $R$-matrices

    J. Phys. A, 53:18 (2020), 185202, 16 pp.
  8. Generalized Calogero and Toda models

    Pis'ma v Zh. Èksper. Teoret. Fiz., 109:2 (2019),  131–138
  9. Quasi-compact Higgs bundles and Calogero–Sutherland systems with two types of spins

    J. Math. Phys., 59:10 (2018), 103509, 36 pp.
  10. Calogero–Sutherland system with two types interacting spins

    Pis'ma v Zh. Èksper. Teoret. Fiz., 106:3 (2017),  173–174
  11. Noncommutative extensions of elliptic integrable Euler–Arnold tops and Painlevé VI equation

    J. Phys. A, 49:39 (2016), 395202, 26 pp.
  12. Yang–Baxter equations with two Planck constants

    J. Phys. A, 49:1 (2016), 14003, 19 pp.
  13. Geometry of Higgs bundles over elliptic curves related to automorphisms of simple Lie algebras, Calogero–Moser systems, and KZB equations

    TMF, 188:2 (2016),  185–222
  14. Classical integrable systems and Knizhnik–Zamolodchikov–Bernard equations

    Pis'ma v Zh. Èksper. Teoret. Fiz., 101:9 (2015),  723–729
  15. Quantum Baxter–Belavin $R$-matrices and multidimensional Lax pairs for Painlevé VI

    TMF, 184:1 (2015),  41–56
  16. Planck constant as spectral parameter in integrable systems and KZB equations

    JHEP, 2014, no. 10, 109, 29 pp.
  17. Relativistic classical integrable tops and quantum $R$-matrices

    JHEP, 2014, no. 7, 012, 39 pp.
  18. Classical integrable systems and soliton equations related to eleven-vertex $R$-matrix

    Nuclear Phys. B, 887 (2014),  400–422
  19. Classification of isomonodromy problems on elliptic curves

    Uspekhi Mat. Nauk, 69:1(415) (2014),  39–124
  20. Characteristic classes of $\mathrm{SL}(N,\mathbb{C})$-bundles and quantum dynamical elliptic $R$-matrices

    J. Phys. A, 46:3 (2013), 35201, 25 pp.
  21. Characteristic classes and Hitchin systems. General construction

    Comm. Math. Phys., 316:1 (2012),  1–44
  22. Calogero–Moser systems for simple Lie groups and characteristic classes of bundles

    J. Geom. Phys., 62:8 (2012),  1810–1850
  23. Hecke Transformations of Conformal Blocks in WZW Theory. I. KZB Equations for Non-Trivial Bundles

    SIGMA, 8 (2012), 095, 37 pp.
  24. Monopoles and Modifications of Bundles over Elliptic Curves

    SIGMA, 5 (2009), 065, 22 pp.
  25. Quadratic algebras related to elliptic curves

    TMF, 156:2 (2008),  163–183
  26. Elliptic hydrodynamics and quadratic algebras of vector fields on a torus

    TMF, 150:3 (2007),  355–370
  27. dS–AdS Structures in Noncommutative Minkowski Spaces

    TMF, 144:3 (2005),  513–543
  28. The large $N$ limits of integrable models

    Mosc. Math. J., 3:4 (2003),  1307–1331
  29. Unitary Representations of the Quantum Lorentz Group and Quantum Relativistic Toda Chain

    TMF, 130:3 (2002),  355–382
  30. Solutions of the Periodic Toda Lattice by the Projection and the Algebraic-Geometric Methods

    TMF, 128:3 (2001),  461–473
  31. Nonautonomous Hamiltonian systems related to higher Hitchin integrals

    TMF, 123:2 (2000),  237–263
  32. The $q$-Fourier transformation of $q$-generalized functions

    Mat. Sb., 190:5 (1999),  93–112
  33. $q$-integral representations of modified $q$-Bessel functions and $q$-Macdonald functions

    Mat. Sb., 188:8 (1997),  125–148
  34. Modified $q$-Bessel functions and $q$-Macdonald functions

    Mat. Sb., 187:10 (1996),  109–128
  35. Between $\widehat {gl}(\infty )$ and $\widehat {sl}_N$ affine algebras I. Geometrical actions

    TMF, 100:1 (1994),  82–96
  36. Scattering of clusters in quantum calogero model

    TMF, 95:2 (1993),  341–347
  37. Quantum-mechanical calculation of the orders of finite simple groups of Lie type

    TMF, 82:3 (1990),  366–379
  38. Some examples of instantons in sigma models

    TMF, 79:2 (1989),  185–197
  39. Ricci-flat compactifications in superstring theory and coxeter automorphisms. II

    TMF, 77:3 (1988),  352–368
  40. Ricci-flat compactifications in superstring theory and Coxeter automorphisms. I

    TMF, 77:2 (1988),  212–223
  41. Integrable systems. II

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 16 (1987),  86–226
  42. Adjoint representations of exceptional Lie algebras

    TMF, 72:1 (1987),  3–11
  43. Wave functions of quantum integrable systems

    TMF, 57:1 (1983),  148–153
  44. A short guide to modern geometry for physicists

    UFN, 136:3 (1982),  421–433
  45. The Toda chain as a reduced system

    TMF, 45:1 (1980),  3–18
  46. Quantum systems related to root systems, and radial parts of Laplace operators

    Funktsional. Anal. i Prilozhen., 12:2 (1978),  57–65
  47. Explicit solutions of some completely integrable Hamiltonian systems

    Funktsional. Anal. i Prilozhen., 11:1 (1977),  75–76
  48. Geodesic flows on symmetric spaces of zero curvature and explicit solution of the generalized calogero model for the classical case

    Funktsional. Anal. i Prilozhen., 10:3 (1976),  86–87
  49. The asymptotic behavior of spherical functions

    Uspekhi Mat. Nauk, 27:3(165) (1972),  211–212
  50. Green's functions for the Laplace–Beltrami operator on symmetric spaces

    Uspekhi Mat. Nauk, 27:2(164) (1972),  179–180
  51. The Martin boundary for the Laplace–Beltrami operator on a Riemannian symmetric space of nonpositive curvature

    Uspekhi Mat. Nauk, 24:6(150) (1969),  189–190

  52. Igor' Moiseevich Krichever (on his 70th birthday)

    Uspekhi Mat. Nauk, 76:4(460) (2021),  183–193
  53. Naum Yakovlevich Vilenkin (on his seventieth birthday)

    Uspekhi Mat. Nauk, 46:3(279) (1991),  215–217


© Steklov Math. Inst. of RAS, 2026