RUS  ENG
Full version
PEOPLE

Fursikov Andrei Vladimirovich

Publications in Math-Net.Ru

  1. Main recent research results of the staff of the Chair of General Problems of Control

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2024, no. 6,  64–71
  2. On an estimate connected with the stabilization of normal parabolic equation by start control

    Fundam. Prikl. Mat., 19:4 (2014),  197–230
  3. Flow of a viscous incompressible fluid around a body: boundary-value problems and minimization of the work of a fluid

    CMFD, 37 (2010),  83–130
  4. Stabilization from the boundary of solution for Navier-Stokes system: solvability and justification of numerical simulation

    Dal'nevost. Mat. Zh., 4:1 (2003),  86–100
  5. Stabilizability of a quasi-linear parabolic equation by means of a boundary control with feedback

    Mat. Sb., 192:4 (2001),  115–160
  6. Exact controllability of the Navier–Stokes and Boussinesq equations

    Uspekhi Mat. Nauk, 54:3(327) (1999),  93–146
  7. Local exact controllability of the two-dimensional Navier–Stokes equations

    Mat. Sb., 187:9 (1996),  103–138
  8. Rate of convergence in the closure of a chain of moment equations that correspond to the Navier–Stokes system with a random right-hand side

    Differ. Uravn., 30:4 (1994),  699–711
  9. The rate of convergence of approximations for the closure of the Friedman–Keller chain in the case of large Reynolds numbers

    Mat. Sb., 185:2 (1994),  115–143
  10. Moment theory for the Navier–Stokes equations with a random right side

    Izv. RAN. Ser. Mat., 56:6 (1992),  1273–1315
  11. On $\varepsilon$-controllability of the Stokes problem with distributed control concentrated on a subdomain

    Uspekhi Mat. Nauk, 47:1(283) (1992),  217–218
  12. The problem of closure of the chains of moment equations corresponding to the three-dimensional Navier–Stokes system in the case of large Reynolds numbers

    Dokl. Akad. Nauk SSSR, 319:1 (1991),  83–87
  13. The Cauchy problem for a second-order elliptic equation in a conditionally well-posed formulation

    Tr. Mosk. Mat. Obs., 52 (1989),  138–174
  14. On uniqueness of the solution of the chain of moment equations corresponding to the three-dimensional Navier–Stokes system

    Mat. Sb. (N.S.), 134(176):4(12) (1987),  472–495
  15. On the question of the solvability of the Cauchy problem for the Laplace operator

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1987, no. 3,  78–80
  16. Analytic functionals and unique solvability of quasilinear dissipative systems under almost all initial conditions

    Tr. Mosk. Mat. Obs., 49 (1986),  3–55
  17. Space-time moments and statistical solutions concentrated on smooth solutions of a three-dimensional Navier–Stokes system or a quasilinear parabolic system

    Dokl. Akad. Nauk SSSR, 274:3 (1984),  548–553
  18. Solvability of a chain of equations for space-time moments

    Mat. Sb. (N.S.), 125(167):3(11) (1984),  306–331
  19. Properties of solutions of some control problems connected with the Navier–Stokes system

    Dokl. Akad. Nauk SSSR, 262:1 (1982),  44–48
  20. Properties of solutions of some extremal problems connected with the Navier–Stokes system

    Mat. Sb. (N.S.), 118(160):3(7) (1982),  323–349
  21. On the problem of unique solubility of a three-dimensional Navier–Stokes system for almost all initial conditions

    Uspekhi Mat. Nauk, 36:2(218) (1981),  207–208
  22. Control problems and theorems concerning the unique solvability of a mixed boundary value problem for the three-dimensional Navier–Stokes and Euler equations

    Mat. Sb. (N.S.), 115(157):2(6) (1981),  281–306
  23. On some control problems and results concerning the unique solvability of a mixed boundary value problem for the three-dimensional Navier–Stokes and Euler systems

    Dokl. Akad. Nauk SSSR, 252:5 (1980),  1066–1070
  24. Some mathematical problems of statistical hydromechanics

    Uspekhi Mat. Nauk, 34:5(209) (1979),  135–210
  25. Space-time statistical solutions of the Navier-Stokes system which are homogeneous in $x$, and individual solutions with infinite energy

    Dokl. Akad. Nauk SSSR, 239:5 (1978),  1025–1028
  26. Translationally homogeneous statistical solutions and individual solutions with infinite energy of a system of Navier–Stokes equations

    Sibirsk. Mat. Zh., 19:5 (1978),  1005–1031
  27. Homogeneous statistical solutions of the Navier–Stokes system

    Uspekhi Mat. Nauk, 32:5(197) (1977),  179–180
  28. The Cauchy problem for the Hopf equation corresponding to parabolic equations. Statistical solutions and moment functions

    Dokl. Akad. Nauk SSSR, 227:5 (1976),  1041–1044
  29. Formulas for certain functionals of the smooth solutions of a class of systems of quasilinear equations

    Uspekhi Mat. Nauk, 31:1(187) (1976),  265–266
  30. The Cauchy problem for nonlinear Schrödinger-type equations

    Mat. Sb. (N.S.), 96(138):3 (1975),  458–470
  31. Analytic first integrals of non-linear parabolic systems of differential equations in the sense of Petrovskii, and applications

    Uspekhi Mat. Nauk, 29:2(176) (1974),  123–153
  32. Asymptotic expansion of moment functions of solutions of nonlinear parabolic equations

    Mat. Sb. (N.S.), 95(137):4(12) (1974),  588–605
  33. Some questions in the theory of nonlinear elliptic and parabolic equations

    Mat. Sb. (N.S.), 94(136):2(6) (1974),  300–334
  34. Analytic first integrals of nonlinear parabolic equations and their applications

    Mat. Sb. (N.S.), 92(134):3(11) (1973),  347–377
  35. On a class of globally hypoelliptic operators

    Mat. Sb. (N.S.), 91(133):3(7) (1973),  367–389
  36. Boundary value problems for some classes of degenerating elliptic operators

    Dokl. Akad. Nauk SSSR, 197:3 (1971),  535–538
  37. The global smoothness of the solutions of a class of degenerating elliptic equations

    Uspekhi Mat. Nauk, 26:5(161) (1971),  227–228
  38. A class of degenerate elliptic operators

    Mat. Sb. (N.S.), 79(121):3(7) (1969),  381–404

  39. Igor Germanovich Tsarkov (to 60th anniversary)

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2020, no. 4,  70–71
  40. Marko Iosifovich Vishik (obituary)

    Uspekhi Mat. Nauk, 68:2(410) (2013),  197–200
  41. Sergey L'vovich Sobolev (to his 100-th Anniversary)

    Math. Ed., 2008, no. 2(46),  8–15
  42. Workshop on Mathematical Hydrodynamics

    Uspekhi Mat. Nauk, 62:3(375) (2007),  3–4
  43. Mark Iosifovich Vishik (on his 75th birthday)

    Uspekhi Mat. Nauk, 52:4(316) (1997),  225–232
  44. Sessions of the Petrovskii Seminar on differential equations and mathematical problems of physics

    Uspekhi Mat. Nauk, 30:2(182) (1975),  261–269


© Steklov Math. Inst. of RAS, 2026