RUS  ENG
Full version
PEOPLE

Tyutyanov Valentin Nikolaevich

Publications in Math-Net.Ru

  1. $G$-permutable subgroups in $\operatorname{PSL}_2(q)$ and hereditarily $G$-permutable subgroups in $\operatorname{PSU}_3(q)$

    Bulletin of Irkutsk State University. Series Mathematics, 53 (2025),  156–164
  2. Finite groups with a solvable Hall $\sigma$-basis

    Mat. Zametki, 118:5 (2025),  714–724
  3. The Kegel–Wielandt $\sigma$-problem: reduction to simple groups

    Sibirsk. Mat. Zh., 66:1 (2025),  36–45
  4. Isoorderly permutable subgroups of finite groups

    Trudy Inst. Mat. i Mekh. UrO RAN, 31:1 (2025),  66–76
  5. The Kegel–Wielandt $\sigma$-problem: review of results

    PFMT, 2024, no. 4(61),  89–97
  6. Finite groups with hereditarily $G$-permutable subgroups of small order

    PFMT, 2024, no. 1(58),  63–67
  7. Finite groups with $g$-permutable normalizers of sylow subgroups

    Sibirsk. Mat. Zh., 65:4 (2024),  645–652
  8. Finite groups with $S$-conditionally permutable Schmidt subgroups

    Sibirsk. Mat. Zh., 65:1 (2024),  74–86
  9. The Kegel–Wielandt $\sigma$-problem for the partition $\sigma= \{\{2\},\{3\},\{2,3\}'\}$

    PFMT, 2023, no. 4(57),  64–68
  10. On the existence of hereditarily $G$-permutable subgroups in exceptional groups $G$ of Lie type

    Sibirsk. Mat. Zh., 64:5 (2023),  935–944
  11. On the solubility and supersolubility of finite groups

    Sibirsk. Mat. Zh., 64:2 (2023),  312–320
  12. On the Kegel–Wielandt $\sigma$-Problem

    Trudy Inst. Mat. i Mekh. UrO RAN, 29:4 (2023),  121–129
  13. Finite Groups with Hereditarily $G$-Permutable Minimal Subgroups

    Trudy Inst. Mat. i Mekh. UrO RAN, 29:1 (2023),  102–110
  14. On some aspects of the Kegel-Wielandt $\sigma$-problem

    Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 2,  18–28
  15. $G$-Covering Subgroup Systems for the Class of All $\sigma$-Nilpotent Finite Groups

    Mat. Zametki, 111:2 (2022),  233–240
  16. On the center of a graph defined by Schmidt subgroups of a finite group

    PFMT, 2022, no. 4(53),  73–79
  17. On the existence of $G$-permutable subgroups in simple sporadic groups

    Sibirsk. Mat. Zh., 63:4 (2022),  831–841
  18. On one criterion for the $\sigma$-nilpotency of a finite group

    Sibirsk. Mat. Zh., 63:1 (2022),  116–122
  19. On the Baer–Suzuki Width of Some Radical Classes

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:2 (2022),  96–105
  20. On the Kegel–Wielandt $\sigma$-Problem

    Mat. Zametki, 109:4 (2021),  564–570
  21. One property of hereditary saturated formations

    PFMT, 2021, no. 1(46),  50–53
  22. On $\sigma$-subnormality of Sylow subgroups in a finite group

    Sibirsk. Mat. Zh., 62:2 (2021),  286–297
  23. On two problems from “The Kourovka Notebook”

    Trudy Inst. Mat. i Mekh. UrO RAN, 27:1 (2021),  98–102
  24. A criterion for the $\sigma$-subnormality of a subgroup in a finite $3'$-group

    Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 8,  36–43
  25. Finite simple groups all the maximal subgroups of which have $3'$-index

    PFMT, 2020, no. 3(44),  67–72
  26. Finite simple groups all the maximal subgroups of which have odd index

    PFMT, 2020, no. 2(43),  71–74
  27. On $\sigma$-subnormal subgroups of finite groups

    Sibirsk. Mat. Zh., 61:2 (2020),  337–343
  28. Chains in finite groups

    PFMT, 2019, no. 4(41),  70–73
  29. Simple non-abelian groups with second maximal pronormal subgroups

    PFMT, 2019, no. 3(40),  104–106
  30. Finite groups with supersoluble subgroups of given orders

    Trudy Inst. Mat. i Mekh. UrO RAN, 25:4 (2019),  155–163
  31. Finite groups with nilpotent subgroups of odd order

    PFMT, 2018, no. 3(36),  84–86
  32. Product of two $\mathbb{P}$-subnormal subgroups

    PFMT, 2018, no. 2(35),  80–84
  33. Factorizations of simple non-abelian groups by subgroups of odd indixes

    Sib. Èlektron. Mat. Izv., 15 (2018),  29–34
  34. Finite groups with $\mathbb{P}$-subnormal subgroups

    PFMT, 2016, no. 1(26),  68–70
  35. Finite groups with $\mathbb{P}$-subnormal Schmidt subgroups

    PFMT, 2015, no. 1(22),  88–91
  36. On $\mathrm K$-$\mathbb P$-Subnormal Subgroups of Finite Groups

    Mat. Zametki, 95:4 (2014),  517–528
  37. On finite groups with minimal $\mathbb{P}$-subnormal subgroups

    PFMT, 2014, no. 4(21),  97–99
  38. On finite groups with given system of Sylow subgroups

    PFMT, 2014, no. 3(20),  85–87
  39. On finite groups with given maximal subgroups

    Sibirsk. Mat. Zh., 55:3 (2014),  553–561
  40. On one class of superradical hereditary saturated formations

    Sibirsk. Mat. Zh., 55:1 (2014),  97–108
  41. Critical groups of hereditary local superradical formation

    PFMT, 2013, no. 2(15),  66–75
  42. Product of two solvable subgroups of 3' index

    PFMT, 2012, no. 4(13),  70–73
  43. A nonsimple criterion for finite factorized groups

    PFMT, 2012, no. 3(12),  94–95
  44. Simple non abelian group with $D_\pi$ Schmidt subgroups

    PFMT, 2012, no. 2(11),  95–98
  45. On the products of $\mathbb P$-subnormal subgroups of finite groups

    Sibirsk. Mat. Zh., 53:1 (2012),  59–67
  46. On finite groups similar to supersoluble groups

    PFMT, 2010, no. 2(3),  21–27
  47. On the finite groups of supersoluble type

    Sibirsk. Mat. Zh., 51:6 (2010),  1270–1281
  48. On factorization of finite almost simple groups by nonconjugate maximal subgroups

    Sibirsk. Mat. Zh., 51:1 (2010),  212–216
  49. Finite Groups with Two Noncomplemented Subgroups

    Mat. Zametki, 85:4 (2009),  630–635
  50. On finite groups with some subgroups of prime indices

    Sibirsk. Mat. Zh., 48:4 (2007),  833–836
  51. Characterization of $r$-solvable groups

    Sibirsk. Mat. Zh., 41:1 (2000),  214–223
  52. On the existence of solvable normal subgroups in finite groups

    Mat. Zametki, 61:5 (1997),  755–758
  53. Products of $\pi$-nilpotent subgroups

    Mat. Sb., 187:9 (1996),  97–102
  54. The product of two finite groups with a maximal nilpotent intersection

    Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 10,  82–83


© Steklov Math. Inst. of RAS, 2026