RUS  ENG
Full version
PEOPLE

Bashkin Anatolii Sergeevich

Publications in Math-Net.Ru

  1. Possibilities of improving the performance of an autonomous cw chemical DF laser by replacing the slot nozzles by the ramp ones in the nozzle array

    Kvantovaya Elektronika, 41:8 (2011),  697–702
  2. About possibilities of clearing near-Earth space from dangerous debris by a spaceborne laser system with an autonomous cw chemical HF laser

    Kvantovaya Elektronika, 41:7 (2011),  669–674
  3. On the possibility of simultaneous emission of an autonomous cw HF — DF chemical laser in two spectral ranges

    Kvantovaya Elektronika, 38:5 (2008),  429–435
  4. The efficiency of propagation of radiation from different lasers through the turbulent Earth's atmosphere

    Kvantovaya Elektronika, 33:1 (2003),  31–36
  5. Problems in the development of autonomous mobile laser systems based on a cw chemical DF laser

    Kvantovaya Elektronika, 33:1 (2003),  25–30
  6. Optical pumping of chemical HF lasers on the basis of NF3–H2 and ClF5–H2 mixtures by an open surface discharge in the bleaching-wave mode

    Kvantovaya Elektronika, 31:7 (2001),  611–616
  7. Investigation of the optical quality of the active medium of high-power cw chemical HF lasers by lateral-shearing interferometric methods

    Kvantovaya Elektronika, 24:9 (1997),  786–790
  8. Analysis of the spatial scales of optical inhomogeneities in active media of high-power gas-flow laser amplifiers

    Kvantovaya Elektronika, 24:2 (1997),  173–175
  9. Optical homogeneity of the active media of cw chemical HF(DF) lasers

    Kvantovaya Elektronika, 23:5 (1996),  428–432
  10. Energy and spectral characteristics of cw HF lasers with resonant optical pumping

    Kvantovaya Elektronika, 15:5 (1988),  1002–1009
  11. Influence of polyatomic gases on the output energy of a photodissociation H2–F2 laser

    Kvantovaya Elektronika, 14:8 (1987),  1563–1567
  12. Investigation of the energetics of a pulsed chemical H2–F2 laser at low partial pressures of hydrogen and fluorine

    Kvantovaya Elektronika, 14:8 (1987),  1558–1562
  13. Continuous-wave HF chemical laser utilizing a chain reaction with a thermal branching mechanism

    Kvantovaya Elektronika, 14:5 (1987),  943–952
  14. Numerical investigation of a purely chemical generator of atomic gaseous hydrogen (deuterium) and of a cw H(D)–O3–CO2 laser utilizing this generator

    Kvantovaya Elektronika, 14:2 (1987),  244–252
  15. Possible development of chemical lasers utilizing the hydrogen fluorination chain reaction with a thermal branching mechanism

    Kvantovaya Elektronika, 14:1 (1987),  151–157
  16. High-efficiency low-divergence pulsed chemical photoinitiated D2–F2 laser with an active medium of 6-liter volume

    Kvantovaya Elektronika, 13:11 (1986),  2344–2347
  17. Numerical and experimental investigations of the energy capabilities of a chemical OD(OH)–CO2 laser

    Kvantovaya Elektronika, 13:10 (1986),  1999–2008
  18. Investigation of the feasibility of generation of short radiation pulses in an atmospheric-pressure chemical H2–F2 laser

    Kvantovaya Elektronika, 13:5 (1986),  1065–1068
  19. Feasibility of construction of a chemical laser utilizing the BX electronic transition in the IF molecule

    Kvantovaya Elektronika, 13:3 (1986),  665–667
  20. Efficiency of resonance laser-collisional conversion of hydrogen fluoride laser radiation

    Kvantovaya Elektronika, 12:8 (1985),  1758–1760
  21. Numerical multiparameter optimization of a pulsed chemical D2–F2–CO2 laser

    Kvantovaya Elektronika, 11:11 (1984),  2336–2348
  22. Investigation of the possibility of suppression of uncontrolled emission of radiation from high-power hydrogen fluoride chemical amplifiers of short light pulses

    Kvantovaya Elektronika, 11:8 (1984),  1601–1609
  23. Effect of energy chain branching in the hydrogen fiuorination reaction on the characteristics of an H2–F2 laser

    Kvantovaya Elektronika, 11:5 (1984),  1026–1032
  24. Investigation of amplification of light by CO2 molecules under conditions of supersonic mixing of H–H2–Xe and CO2–Cl2–He streams

    Kvantovaya Elektronika, 11:4 (1984),  824–826
  25. Feasibility of developing a cw OH chemical laser

    Kvantovaya Elektronika, 11:1 (1984),  97–102
  26. Efficiency of initiation of a pulsed H2–F2 laser by photolysis and electron beam methods

    Kvantovaya Elektronika, 10:10 (1983),  2126–2128
  27. Determination of the absolute concentration of fluorine atoms from the absorption of ultraviolet radiation by FO2 radicals

    Kvantovaya Elektronika, 10:8 (1983),  1693–1695
  28. Energy lost in formation of fluorine atoms in the course of electron-beam dissociation of fluorine and fluoride molecules

    Kvantovaya Elektronika, 10:2 (1983),  428–429
  29. Influence of the initial initiation on the parameters of an H2/F2 laser

    Kvantovaya Elektronika, 9:3 (1982),  630–632
  30. Investigation into the possibility of obtaining high specific lasing parameters from an HF laser utilizing a chain reaction

    Kvantovaya Elektronika, 9:3 (1982),  628–630
  31. Investigation of a chemical HF laser utilizing a highpressure H2–SF6 mixture

    Kvantovaya Elektronika, 9:3 (1982),  625–628
  32. High-efficiency photoinitiated chemical D2–F2–CO2 laser

    Kvantovaya Elektronika, 9:3 (1982),  624–625
  33. Numerical optimization of the parameters of a chemical D2–F2–CO2 amplifier of nanosecond pulses

    Kvantovaya Elektronika, 8:5 (1981),  936–940
  34. Feasibility of construction of a chemical H2–Cl2 laser with a chain reaction mechanism

    Kvantovaya Elektronika, 8:1 (1981),  178–182
  35. Experimental investigation of the possibility of efficient extraction of energy from the active medium of a $DF-CO_2$ amplifier of nanosecond radiation pulses

    Kvantovaya Elektronika, 7:10 (1980),  2240–2243
  36. Investigation of a flashlamp-initiated large-volume chemical $H_2-F_2$ laser

    Kvantovaya Elektronika, 7:8 (1980),  1821–1823
  37. Gasdynamic chemical laser utilizing a $D-O_3-CO_2$ mixture. II. Calculation model

    Kvantovaya Elektronika, 7:7 (1980),  1430–437
  38. Gasdynamic chemical laser utilizing $D-O_3-CO_2$ and $H-O_3-CO_2$ mixtures. I. Experimental investigation

    Kvantovaya Elektronika, 7:7 (1980),  1422–1429
  39. Energy parameters of electron-beam-initiated $H_2-F_2-$, $D_2-F_2-$ and $D_2-F_2-CO_2$ lasers

    Kvantovaya Elektronika, 7:6 (1980),  1357–1359
  40. Investigation of the efficiency of lamp sources for photoinitiation of pulsed hydrogen fluoride lasers

    Kvantovaya Elektronika, 6:10 (1979),  2277–2279
  41. Investigation of the conditions for efficient initiation of HF chemical lasers by a relativistic electron beam

    Kvantovaya Elektronika, 6:10 (1979),  2166–2174
  42. Influence of the parameters of a fluorine–hydrogen mixture on the flame propagation velocity

    Kvantovaya Elektronika, 6:8 (1979),  1822–1824
  43. Investigation of the energy parameters of a chemical ClF–H2 laser with electron-beam initiation

    Kvantovaya Elektronika, 5:12 (1978),  2657–2659
  44. Gain measurement in a supersonic jet utilizing a D+O3+CO2 mixture

    Kvantovaya Elektronika, 5:12 (1978),  2656–2657
  45. Chain-reaction chemical lasers for the visible range

    Kvantovaya Elektronika, 5:12 (1978),  2611–2619
  46. Utilization of excited atoms in thermally initiated chemical lasers in the visible range

    Kvantovaya Elektronika, 5:12 (1978),  2567–2576
  47. Efficient electron-beam-pumped HF chemical laser with a high specific energy output

    Kvantovaya Elektronika, 5:7 (1978),  1608–1610
  48. Investigation of an HF master oscillator–amplifier system based on the chain hydrogen–fluorine reaction

    Kvantovaya Elektronika, 5:4 (1978),  910–913
  49. Possibility of generation of short laser radiation pulses as a result of photolysis of a cooled H2–F2 mixture

    Kvantovaya Elektronika, 5:4 (1978),  907–909
  50. Possibility of constructing a chemically pumped laser emitting visible radiation from S2 molecules

    Kvantovaya Elektronika, 5:2 (1978),  421–424
  51. An investigation of a chemical laser emitting due to an overtone of the HF molecule

    Kvantovaya Elektronika, 4:5 (1977),  1112–1114
  52. Chemical laser emitting visible radiation as a result of oxidation reactions

    Kvantovaya Elektronika, 4:5 (1977),  1063–1070
  53. Chemical DF–CO2 amplifier of short light pulses

    Kvantovaya Elektronika, 4:5 (1977),  1004–1008
  54. Energy characteristics of an electron-beam-excited HF chemical laser

    Kvantovaya Elektronika, 4:1 (1977),  169–171
  55. Possibility of obtaining generation on a CO molecule behind the front of a compressed detonation wave in a CS$_2$ + O$_2$ mixture

    Fizika Goreniya i Vzryva, 12:5 (1976),  739–744
  56. DF–CO2 chemical quantum amplifier with high performance characteristics

    Kvantovaya Elektronika, 3:9 (1976),  2067–2070
  57. Amplification of the fundamental frequency and harmonics by chemical reaction

    Kvantovaya Elektronika, 3:9 (1976),  1967–1979
  58. High-power 1 μsec ultraviolet radiation source for pumping of gas lasers

    Kvantovaya Elektronika, 3:8 (1976),  1824–1826
  59. Supersonic chemical CO2 laser utilizing mixing of atomic deuterium with ozone and carbon dioxide

    Kvantovaya Elektronika, 3:5 (1976),  1142–1143
  60. Stimulated emission from a CS2–O mixture in a shock tube with a supersonic nozzle

    Kvantovaya Elektronika, 3:2 (1976),  463–465
  61. Photoinitiated chemical CO laser utilizing CS2+O3 mixtures

    Kvantovaya Elektronika, 3:2 (1976),  362–368
  62. A contribution to the development of cw recombination lasers

    Kvantovaya Elektronika, 3:1 (1976),  29–34
  63. Influence of cooling on the operation of a chemical CO2 laser utilizing an O3 : D2 : CO2 mixture

    Kvantovaya Elektronika, 2:11 (1975),  2534–2536
  64. Investigation of the energy characteristics of a chemical ŅO2 laser utilizing a O3 + D2 + CO2 mixture

    Kvantovaya Elektronika, 2:9 (1975),  2092–2095
  65. Photorecombination lasers (review)

    Kvantovaya Elektronika, 1973, no. 1(13),  5–29
  66. Output parameters of a chemical CS2+O2 laser

    Kvantovaya Elektronika, 1972, no. 5(11),  129–131
  67. Utilization of photorecombination of radicals and atoms in continuous-wave lasers

    Kvantovaya Elektronika, 1971, no. 6,  89–91
  68. Current status and development prospects of quantum frequency standards (review)

    Kvantovaya Elektronika, 1971, no. 5,  3–27
  69. Stabilization of the oscillation frequency of a gas laser by comparison with a radio-frequency standard

    Kvantovaya Elektronika, 1971, no. 2,  40–48

  70. Errata to the article: Possibilities of improving the performance of an autonomous cw chemical DF laser by replacing the slot nozzles by the ramp ones in the nozzle array

    Kvantovaya Elektronika, 42:1 (2012),  94
  71. Errata to the article: Feasibility of construction of a chemical laser utilizing the BX electronic transition in the IF molecule

    Kvantovaya Elektronika, 14:3 (1987),  656


© Steklov Math. Inst. of RAS, 2026