RUS  ENG
Full version
PEOPLE

Makhnev Aleksandr Alekseevich

Publications in Math-Net.Ru

  1. XV school-conference on group theory dedicated to the 95th Birthday of M.I. Kargapolov

    Trudy Inst. Mat. i Mekh. UrO RAN, 31:1 (2025),  273–285
  2. Enumeration of intersection arrays of Shilla graphs with $b=6$

    Ural Math. J., 11:2 (2025),  171–182
  3. On bipartite $Q$-polynomial graphs of diameter not greater than $5$

    Vladikavkaz. Mat. Zh., 27:3 (2025),  21–27
  4. On distance regular graphs with diameter $3$ and degree $44$

    Proceedings of the Institute of Mathematics of the NAS of Belarus, 32:1 (2024),  57–63
  5. Graphs $\Gamma$ of diameter 4 for which $\Gamma_{3,4}$ is a strongly regular graph with $\mu=4,6$

    Ural Math. J., 10:1 (2024),  76–83
  6. On automorphisms of a graph with an intersection array $\{44,30,9;1,5,36\}$

    Vladikavkaz. Mat. Zh., 26:3 (2024),  47–55
  7. Distance-regular graph with intersection array $\{143,108,27;1,12,117\}$ does not exist

    Sib. Èlektron. Mat. Izv., 20:1 (2023),  207–210
  8. On Graphs in Which the Neighborhoods of Vertices Are Edge-Regular Graphs without 3-Claws

    Trudy Inst. Mat. i Mekh. UrO RAN, 29:4 (2023),  279–282
  9. On small distance-regular graphs with the intersection arrays $\{mn-1,(m-1)(n+1)$, $n-m+1;1,1,(m-1)(n+1)\}$

    Diskr. Mat., 34:1 (2022),  76–87
  10. The Koolen-Park bound and distance-regular graphs without $m$-clavs

    Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 9,  64–69
  11. On distance-regular graphs of diameter $3$ with eigenvalue $0$

    Mat. Tr., 25:2 (2022),  162–173
  12. On $Q$-polynomial Shilla graphs with $b = 4$

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:2 (2022),  176–186
  13. Open problems formulated at the International Algebraic Conference Dedicated to the 90th Anniversary of A. I. Starostin

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:1 (2022),  269–275
  14. Inverse Problems in the Class of Distance-Regular Graphs of Diameter $4$

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:1 (2022),  199–208
  15. On distance-regular graphs of diameter $3$ with eigenvalue $\theta= 1$

    Ural Math. J., 8:2 (2022),  127–132
  16. On $Q$-polynomial Shilla graphs with $b=6$

    Vladikavkaz. Mat. Zh., 24:2 (2022),  117–123
  17. On nonexistence of distance regular graphs with the intersection array $\{53,40,28,16;1,4,10,28\}$

    Diskretn. Anal. Issled. Oper., 28:3 (2021),  38–48
  18. Three infinite families of Shilla graphs do not exist

    Dokl. RAN. Math. Inf. Proc. Upr., 498 (2021),  45–50
  19. On distance-regular graphs $\Gamma$ of diameter 3 for which $\Gamma_3$ is a triangle-free graph

    Diskr. Mat., 33:4 (2021),  61–67
  20. Automorphisms of a Distance Regular Graph with Intersection Array $\{21,18,12,4;1,1,6,21\}$

    Mat. Zametki, 109:2 (2021),  247–256
  21. Distance-regular Terwilliger graphs with intersection arrays $\{50,42,1;1,2,50\}$ and $\{50,42,9;1,2,42\}$ do not exist

    Sib. Èlektron. Mat. Izv., 18:2 (2021),  1075–1082
  22. Inverse problems of graph theory: graphs without triangles

    Sib. Èlektron. Mat. Izv., 18:1 (2021),  27–42
  23. On distance-regular graphs with intersection arrays $\{q^2-1,q(q-2),q+2;1,q,(q+1)(q-2)\}$

    Trudy Inst. Mat. i Mekh. UrO RAN, 27:1 (2021),  146–156
  24. Shilla graphs with $b = 5$ and $b = 6$

    Ural Math. J., 7:2 (2021),  51–58
  25. Distance-regular graphs with intersection arrays $\{7,6,6;1,1,2\}$ and $\{42,30,2;1,10,36\}$ do not exist

    Vladikavkaz. Mat. Zh., 23:4 (2021),  68–76
  26. Distance-regular graph with intersection array $\{140,108,18;1,18,105\}$ does not exist

    Vladikavkaz. Mat. Zh., 23:2 (2021),  65–69
  27. Automorphisms of a graph with intersection array $\{nm-1, nm-n+m-1,n-m+1;1,1,nm-n+m-1\}$

    Algebra Logika, 59:5 (2020),  567–581
  28. The largest Moore graph and a distance-regular graph with intersection array $\{55,54,2;1,1,54\}$

    Algebra Logika, 59:4 (2020),  471–479
  29. Antipodal Krein graphs and distance-regular graphs close to them

    Dokl. RAN. Math. Inf. Proc. Upr., 492 (2020),  54–57
  30. On distance-regular graphs with $c_2=2$

    Diskr. Mat., 32:1 (2020),  74–80
  31. The nonexistence small $Q$-polynomial graphs of type (III)

    Sib. Èlektron. Mat. Izv., 17 (2020),  1270–1279
  32. Automorphisms of a Distance-Regular Graph with Intersection Array $\{30,22,9;1,3,20\}$

    Trudy Inst. Mat. i Mekh. UrO RAN, 26:3 (2020),  23–31
  33. Inverse problems in the class of Q-polynomial graphs

    Trudy Inst. Mat. i Mekh. UrO RAN, 26:3 (2020),  14–22
  34. Distance-regular graph with intersection array $\{27, 20, 7; 1, 4, 21\}$ does not exist

    Ural Math. J., 6:2 (2020),  63–67
  35. Automorphisms of a distance regular graph with intersection array $\{48,35,9;1,7,40\}$

    Vladikavkaz. Mat. Zh., 22:2 (2020),  24–33
  36. A Shilla graph with Intersection Array $\{12,10,2;1,2,8\}$ Does not Exist

    Mat. Zametki, 106:5 (2019),  797–800
  37. Automorphisms of distance-regular graph with intersection array $\{24,18,9;1,1,16\}$

    Sib. Èlektron. Mat. Izv., 16 (2019),  1547–1552
  38. On $Q$-polynomial distance-regular graphs $\Gamma$ with strongly regular graphs $\Gamma_2$ and $\Gamma_3$

    Sib. Èlektron. Mat. Izv., 16 (2019),  1385–1392
  39. Distance-regular graphs with intersection array $\{69,56,10;1,14,60\}$, $\{74,54,15;1,9,60\}$ and $\{119,100,15;1,20,105\}$ do not exist

    Sib. Èlektron. Mat. Izv., 16 (2019),  1254–1259
  40. On automorphisms of a distance-regular graph with intersection array $\{44,30,5;1,3,40\}$

    Sib. Èlektron. Mat. Izv., 16 (2019),  777–785
  41. On automorphisms of a distance-regular graph with intersection array $\{39,36,22;1,2,18\}$

    Sib. Èlektron. Mat. Izv., 16 (2019),  638–647
  42. Automorphisms of distance regular graph with intersection array $\{30,27,24;1,2,10\}$

    Sib. Èlektron. Mat. Izv., 16 (2019),  493–500
  43. Distance-regular graph with intersection array $\{105,72,24;1,12,70\}$ does not exist

    Sib. Èlektron. Mat. Izv., 16 (2019),  206–216
  44. Nonexistence of certain Q-polynomial distance-regular graphs

    Trudy Inst. Mat. i Mekh. UrO RAN, 25:4 (2019),  136–141
  45. Inverse Problems in the Theory of Distance-Regular Graphs: Dual 2-Designs

    Trudy Inst. Mat. i Mekh. UrO RAN, 25:4 (2019),  44–51
  46. On a distance-regular graph with an intersection array $\{35,28,6;1,2,30\}$

    Vladikavkaz. Mat. Zh., 21:2 (2019),  27–37
  47. Edge-symmetric distance-regular coverings of complete graphs: the almost simple case

    Algebra Logika, 57:2 (2018),  214–231
  48. Distance-Regular Shilla Graphs with $b_2=c_2$

    Mat. Zametki, 103:5 (2018),  730–744
  49. Distance-regular graphs with intersectuion arrays $\{42,30,12;1,6,28\}$ and $\{60,45,8;1,12,50\}$ do not exist

    Sib. Èlektron. Mat. Izv., 15 (2018),  1506–1512
  50. Inverse problems of graph theory: generalized quadrangles

    Sib. Èlektron. Mat. Izv., 15 (2018),  927–934
  51. Automorphisms of graph with intersection array $\{232,198,1;1, 33,232\}$

    Sib. Èlektron. Mat. Izv., 15 (2018),  650–657
  52. Automorphisms of graph with intersection array $\{289,216,1;1,72,289\}$

    Sib. Èlektron. Mat. Izv., 15 (2018),  603–611
  53. On automorphisms of a distance-regular graph with intersection array $\{119,100,15;1,20,105\}$

    Sib. Èlektron. Mat. Izv., 15 (2018),  198–204
  54. On automorphisms of a distance-regular graph with intersection array $\{96,76,1;1,19,96\}$

    Sib. Èlektron. Mat. Izv., 15 (2018),  167–174
  55. Small vertex-symmetric Higman graphs with $\mu=6$

    Sib. Èlektron. Mat. Izv., 15 (2018),  54–59
  56. Inverse problems in distance-regular graphs theory

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:3 (2018),  133–144
  57. Automorphisms of a distance-regular graph with intersection array {176, 135, 32, 1; 1, 16, 135, 176}

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:2 (2018),  173–184
  58. Automorphisms of a distance-regular graph with intersection array $\{39,36,4;1,1,36\}$

    Ural Math. J., 4:2 (2018),  69–78
  59. On automorphisms of a strongly regular graph with parameters $(117,36,15,9)$

    Vladikavkaz. Mat. Zh., 20:4 (2018),  43–49
  60. Automorphism group of a distanceregular graph with intersection array $\{35,32,1;1,4,35\}$

    Algebra Logika, 56:6 (2017),  671–681
  61. Automorphism groups of small distance-regular graphs

    Algebra Logika, 56:4 (2017),  395–405
  62. On automorphisms of a distance-regular graph with intersection array $\{99,84,30;1,6,54\}$

    Diskr. Mat., 29:1 (2017),  10–16
  63. Automorphisms of the $AT4(6,6,3)$-graph and its strongly-regular graphs

    J. Sib. Fed. Univ. Math. Phys., 10:3 (2017),  271–280
  64. Automorphisms of Graphs with Intersection Arrays $\{60,45,8;1,12,50\}$ and $\{49,36,8;1,6,42\}$

    Mat. Zametki, 101:6 (2017),  823–831
  65. Vertex-transitive semi-triangular graphs with $\mu=7$

    Sib. Èlektron. Mat. Izv., 14 (2017),  1198–1206
  66. To the theory of Shilla graphs with $b_2=c_2$

    Sib. Èlektron. Mat. Izv., 14 (2017),  1135–1146
  67. Automorphisms of graph with intersection array $\{64,42,1;1,21,64\}$

    Sib. Èlektron. Mat. Izv., 14 (2017),  1064–1077
  68. Automorphisms of graph with intersection array $\{64,42,1;1,21,64\}$

    Sib. Èlektron. Mat. Izv., 14 (2017),  856–863
  69. Automorphisms of strongly regular graphs with parameters $(1305,440,115,165)$

    Trudy Inst. Mat. i Mekh. UrO RAN, 23:4 (2017),  232–242
  70. On automorphisms of a distance-regular graph with intersection array {69,56,10;1,14,60}

    Trudy Inst. Mat. i Mekh. UrO RAN, 23:3 (2017),  182–190
  71. Automorphisms of distance-regular graph with intersection array $\{25,16,1;1,8,25\}$

    Ural Math. J., 3:1 (2017),  27–32
  72. On automorphisms of a distance-regular graph with intersection array $\{125,96,1;1,48,125\}$

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 159:1 (2017),  13–20
  73. On automorphisms of a distance-regular graph with intersection of arrays $\{39,30,4; 1,5,36\}$

    Vladikavkaz. Mat. Zh., 19:2 (2017),  11–17
  74. Arc-transitive antipodal distance-regular graphs of diameter three related to $PSL_d(q)$

    Sib. Èlektron. Mat. Izv., 13 (2016),  1339–1345
  75. On automorphisms of a distance-regular graph with intersection array $\{243,220,1;1,22,243\}$

    Sib. Èlektron. Mat. Izv., 13 (2016),  1040–1051
  76. Automorphisms of distance-regular graph with intersection array $\{117,80,18,1;1,18,80,117\}$

    Sib. Èlektron. Mat. Izv., 13 (2016),  972–986
  77. Automorphisms of a distance-regular graph with intersection array $\{176,150,1;1,25,176\}$

    Sib. Èlektron. Mat. Izv., 13 (2016),  754–761
  78. Automorphisms of a distance-regular graph with intersection array $\{45,42,1;1,6,45\}$

    Sib. Èlektron. Mat. Izv., 13 (2016),  130–136
  79. Automorphisms of graph with intersection array $\{115,96,16;1,8,92\}$

    Tr. Inst. Mat., 24:2 (2016),  91–97
  80. Graphs in which local subgraphs are strongly regular with second eigenvalue 5

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:4 (2016),  188–200
  81. On graphs in which neighborhoods of vertices are strongly regular with parameters (85,14,3,2) or (325,54,3,10)

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:3 (2016),  137–143
  82. On automorphisms of distance-regular graphs with intersection arrays $\{2r+1,2r-2,1;1,2,2r+1\}$

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:2 (2016),  28–37
  83. Small $AT4$-graphs and strongly regular subgraphs corresponding to them

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:1 (2016),  220–230
  84. On automorphisms of a distance-regular graph with intersection array $\{204,175,48,1;1,12,175,204\}$

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:1 (2016),  212–219
  85. Extensions of pseudogeometric graphs for $pG_{s-5}(s,t)$

    Vladikavkaz. Mat. Zh., 18:3 (2016),  35–42
  86. Electronic Raman scattering and the electron-phonon interaction in YB$_6$

    Pis'ma v Zh. Èksper. Teoret. Fiz., 102:8 (2015),  565–570
  87. Automorphisms of a strongly regular graph with parameters $(532,156,30,52)$

    Sib. Èlektron. Mat. Izv., 12 (2015),  930–939
  88. On automorphisms of a distance-regular graph with intersection array $\{75,72,1;1,12,75\}$

    Sib. Èlektron. Mat. Izv., 12 (2015),  802–809
  89. Automorphisms of a distance-regular graph with intersection array $\{100,66,1;1,33,100\}$

    Sib. Èlektron. Mat. Izv., 12 (2015),  795–801
  90. Strongly regular graphs with nonprincipal eigenvalue 4 and its extensions

    Tr. Inst. Mat., 23:2 (2015),  82–87
  91. On extensions of strongly regular graphs with eigenvalue 4

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:3 (2015),  233–255
  92. Strongly uniform extensions of dual 2-designs

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:1 (2015),  35–45
  93. Automorphisms of a strongly regular graph with parameters $(1197,156,15,21)$

    Vladikavkaz. Mat. Zh., 17:2 (2015),  5–11
  94. Extensions of pseudo-geometric graphs of the partial geometries $pG_{s-4}(s,t)$

    Vladikavkaz. Mat. Zh., 17:1 (2015),  21–30
  95. On distance-regular graphs with $\lambda=2$

    J. Sib. Fed. Univ. Math. Phys., 7:2 (2014),  204–210
  96. Automorphisms of Higman graphs with $\mu=6$

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:2 (2014),  184–209
  97. On extensions of exceptional strongly regular graphs with eigenvalue 3

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:1 (2014),  169–184
  98. On strongly regular graphs with $b_1<26$

    Diskr. Mat., 25:3 (2013),  22–32
  99. Distance-regular graph with the intersection array $\{45,30,7;1,2,27\}$ does not exist

    Diskr. Mat., 25:2 (2013),  13–30
  100. Edge-symmetric distance-regular coverings of cliques: The affine case

    Sibirsk. Mat. Zh., 54:6 (2013),  1353–1367
  101. Exceptional strongly regular graphs with eigenvalue 3

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:4 (2013),  167–174
  102. On strongly regular graphs with eigenvalue $\mu$ and their extensions

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:3 (2013),  207–214
  103. Arc-transitive distance-regular coverings of cliques with $\lambda=\mu$

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:2 (2013),  237–246
  104. On automorphisms of strongly regular graphs with parameters $(320,99,18,36)$

    Vladikavkaz. Mat. Zh., 15:2 (2013),  58–68
  105. An automorphism group of a distance-regular graph with intersection array $\{24,21,3;1,3,18\}$

    Algebra Logika, 51:4 (2012),  476–495
  106. Graphs in which neighborhoods of vertices are isomorphic to the Mathieu graph

    Trudy Inst. Mat. i Mekh. UrO RAN, 18:3 (2012),  155–163
  107. On automorphisms of a distance-regular graph with intersection array $\{35,32,8;1,2,28\}$

    Trudy Inst. Mat. i Mekh. UrO RAN, 18:1 (2012),  235–241
  108. On completely regular graphs with $k=11, $ $\lambda=4$

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 154:2 (2012),  83–92
  109. On Terwilliger Graphs in Which the Neighborhood of Each Vertex is Isomorphic to the Hoffman–Singleton Graph

    Mat. Zametki, 89:5 (2011),  673–685
  110. On almost good triples of vertices in edge regular graphs

    Sibirsk. Mat. Zh., 52:4 (2011),  745–753
  111. On automorphisms of a strongly regular graph with parameters $(210,95,40,45)$

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:4 (2011),  199–208
  112. On graphs in which neighborhoods of vertices are isomorphic to the Higman–Sims graph

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:4 (2011),  189–198
  113. On graphs the neighbourhoods of whose verticesare pseudo-geometric graphs for $GQ(3,3)$

    Tr. Inst. Mat., 18:1 (2010),  28–35
  114. On automorphisms of a strongly regular graph with parameters (76,35,18,14)

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:3 (2010),  185–194
  115. On strongly regular graphs with eigenvalue 2 and their extensions

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:3 (2010),  105–116
  116. On automorphisms of a strongly regular graph with parameters (64,35,18,20)

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:3 (2010),  96–104
  117. On automorphisms of 4-isoregular graphs

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:3 (2010),  78–87
  118. On amply regular graphs with $k=10$, $\lambda=3$

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:2 (2010),  75–90
  119. Distance-regular graphs in which neighborhoods of vertices are isomorphic to the Gewirtz graph

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:2 (2010),  35–47
  120. On automorphisms of strongly regular graphs with parameters $(243,66,9,21)$

    Vladikavkaz. Mat. Zh., 12:4 (2010),  49–59
  121. On automorphisms of strongly regular graph with parameters $(396,135,30,54)$

    Vladikavkaz. Mat. Zh., 12:3 (2010),  30–40
  122. On automorphisms of strongly regular graphs with $\lambda=0$ and $\mu=3$

    Algebra i Analiz, 21:5 (2009),  138–154
  123. On automorphisms of distance-regular graphs

    Fundam. Prikl. Mat., 15:1 (2009),  65–79
  124. Amply Regular Graphs with $b_1=6$

    J. Sib. Fed. Univ. Math. Phys., 2:1 (2009),  63–77
  125. Automorphisms of Coverings of Strongly Regular Graphs with Parameters (81,20,1,6)

    Mat. Zametki, 86:1 (2009),  22–36
  126. On the automorphism group of the Aschbacher graph

    Trudy Inst. Mat. i Mekh. UrO RAN, 15:2 (2009),  162–176
  127. Graphs in which neighborhoods of vertices are isomorphic to the Hoffman–Singleton graph

    Trudy Inst. Mat. i Mekh. UrO RAN, 15:2 (2009),  143–161
  128. Оn automorphisms of the generalized hexagon of order (3,27)

    Trudy Inst. Mat. i Mekh. UrO RAN, 15:2 (2009),  34–44
  129. Об автоморфизмах сильно регулярного графа с параметрами $(95,40,12,20)$

    Vladikavkaz. Mat. Zh., 11:4 (2009),  44–58
  130. On edge-regular graphs with $b_1=5$

    Vladikavkaz. Mat. Zh., 11:1 (2009),  29–42
  131. Automorphisms of Terwilliger graphs with $\mu=2$

    Algebra Logika, 47:5 (2008),  584–600
  132. On Automorphisms of a Generalized Octagon of Order $(2,4)$

    Mat. Zametki, 84:4 (2008),  516–526
  133. Strongly regular locally $GQ(4,t)$-graphs

    Sibirsk. Mat. Zh., 49:1 (2008),  161–182
  134. Completely regular graphs with $\mu\le k-2b_1+3$

    Tr. Inst. Mat., 16:1 (2008),  28–39
  135. О хороших парах вершин в реберно регулярных графах с $k=3b_1-1$

    Trudy Inst. Mat. i Mekh. UrO RAN, 14:4 (2008),  119–134
  136. Графы без 3-корон с некоторыми условиями регулярности

    Trudy Inst. Mat. i Mekh. UrO RAN, 14:4 (2008),  53–69
  137. Edge-regular graphs in which every vertex lies in at most one good pair

    Vladikavkaz. Mat. Zh., 10:1 (2008),  53–67
  138. Terwilliger Graphs with $\mu\le3$

    Mat. Zametki, 82:1 (2007),  14–26
  139. A new estimate for the vertex number of an edge-regular graph

    Sibirsk. Mat. Zh., 48:4 (2007),  817–832
  140. Об автоморфизмах дистанционно регулярного графа с массивом пересечений $\{60,45,8;1,12,50\}$

    Trudy Inst. Mat. i Mekh. UrO RAN, 13:3 (2007),  41–53
  141. Uniform extensions of partial geometries

    Trudy Inst. Mat. i Mekh. UrO RAN, 13:1 (2007),  148–157
  142. A distance-regular graph with the intersection array $\{8,7,5;1,1,4\}$ and its automorphisms

    Trudy Inst. Mat. i Mekh. UrO RAN, 13:1 (2007),  44–56
  143. On edge-regular graphs with $k\ge 3b_1-3$

    Algebra i Analiz, 18:4 (2006),  10–38
  144. Slender partial quadrangles and their automorphisms

    Algebra Logika, 45:5 (2006),  603–619
  145. Amply regular graphs and block designs

    Sibirsk. Mat. Zh., 47:4 (2006),  753–768
  146. On local $GQ(s,t)$ graphs with strongly regular $\mu$-subgraphs

    Algebra i Analiz, 17:3 (2005),  93–106
  147. Automorphisms of Strongly Regular Krein Graphs without Triangles

    Algebra Logika, 44:3 (2005),  335–354
  148. On a class of coedge regular graphs

    Izv. RAN. Ser. Mat., 69:6 (2005),  95–114
  149. On automorphisms of strongly regular graphs with the parameters $\lambda=1$ and $\mu=2$

    Diskr. Mat., 16:1 (2004),  95–104
  150. On the strong regularity of some edge-regular graphs

    Izv. RAN. Ser. Mat., 68:1 (2004),  159–182
  151. On automorphisms of strongly regular graphs with $\lambda=0$, $\mu=2$

    Mat. Sb., 195:3 (2004),  47–68
  152. On good pairs in edge-regular graphs

    Diskr. Mat., 15:1 (2003),  77–97
  153. On Crown-Free Graphs with Regular $\mu$-Subgraphs, II

    Mat. Zametki, 74:3 (2003),  396–406
  154. Ovoids and Bipartite Subgraphs in Generalized Quadrangles

    Mat. Zametki, 73:6 (2003),  878–885
  155. On pseudogeometrical graphs for some partial geometries

    Fundam. Prikl. Mat., 8:1 (2002),  117–127
  156. On strongly regular graphs with $k=2\mu$ and their extensions

    Sibirsk. Mat. Zh., 43:3 (2002),  609–619
  157. Automorphisms of Aschbacher Graphs

    Algebra Logika, 40:2 (2001),  125–134
  158. Extensions of $\mathit{GQ}(4,2)$, the completely regular case

    Diskr. Mat., 13:3 (2001),  91–109
  159. Pseudodual grids and extensions of generalized quadrangles

    Sibirsk. Mat. Zh., 42:5 (2001),  1117–1124
  160. On the graphs with $µ$-subgraphs isomorphic to $K_{u\times 2}$

    Trudy Inst. Mat. i Mekh. UrO RAN, 7:2 (2001),  215–224
  161. Pseudo-geometric graphs of the partial geometries $pG_2(4,t)$

    Diskr. Mat., 12:1 (2000),  113–134
  162. On strongly regular graphs with parameters $(75,32,10,16)$ and $(95,40,12,20)$

    Fundam. Prikl. Mat., 6:1 (2000),  179–193
  163. Affine ovoids and extensions of generalized quadrangles

    Mat. Zametki, 68:2 (2000),  266–271
  164. $GQ(4,2)$-extensions, strongly regular case

    Mat. Zametki, 68:1 (2000),  113–119
  165. On graphs the neighbourhoods of whose vertices are strongly regular with $k=2\mu$

    Mat. Sb., 191:7 (2000),  89–104
  166. Partial geometries and their extensions

    Uspekhi Mat. Nauk, 54:5(329) (1999),  25–76
  167. On the structure of connected locally $GQ(3,9)$-graphs

    Diskretn. Anal. Issled. Oper., Ser. 1, 5:2 (1998),  61–77
  168. Locally $GQ(3,5)$-graphs and geometries with short lines

    Diskr. Mat., 10:2 (1998),  72–86
  169. On a class of graphs without 3-stars

    Mat. Zametki, 63:3 (1998),  407–413
  170. Locally Shrikhande graphs and their automorphisms

    Sibirsk. Mat. Zh., 39:5 (1998),  1085–1097
  171. Extensions of $\mathrm{GQ}(4,2)$, the description of hyperovals

    Diskr. Mat., 9:3 (1997),  101–116
  172. On 2-locally Seidel graphs

    Izv. RAN. Ser. Mat., 61:4 (1997),  67–80
  173. Characterization of a class of edge-regular graphs

    Izv. Vyssh. Uchebn. Zaved. Mat., 1997, no. 1,  22–27
  174. On extensions of partial geometries containing small $\mu$-subgraphs

    Diskretn. Anal. Issled. Oper., 3:3 (1996),  71–83
  175. О сильно регулярных расширениях обобщенных четырехугольников с короткими прямыми

    Diskr. Mat., 8:3 (1996),  31–39
  176. Coedge regular graphs without 3-stars

    Mat. Zametki, 60:4 (1996),  495–503
  177. On separated graphs with certain regularity conditions

    Mat. Sb., 187:10 (1996),  73–86
  178. On pseudogeometric graphs of the partial geometries $pG_2(4,t)$

    Mat. Sb., 187:7 (1996),  97–112
  179. On regular Terwilliger graphs with $\mu=2$

    Sibirsk. Mat. Zh., 37:5 (1996),  1132–1134
  180. On regular graphs in which each edge lies in the largest number of triangles

    Diskretn. Anal. Issled. Oper., 2:4 (1995),  42–53
  181. On a strongly regular graph with the parameters $(64,18,2,6)$

    Diskr. Mat., 7:3 (1995),  121–128
  182. Cyclic TI-subgroups of order 4 in exceptional Chevalley groups

    Trudy Inst. Mat. i Mekh. UrO RAN, 3 (1995),  41–49
  183. Finite locally-$GQ(3,3)$ graphs

    Sibirsk. Mat. Zh., 35:6 (1994),  1314–1324
  184. Strongly regular locally latticed graphs

    Diskr. Mat., 5:4 (1993),  145–150
  185. On strongly regular extensions of generalized quadrangles

    Mat. Sb., 184:12 (1993),  123–132
  186. Tightly embedded subgroups with abelian fusion

    Trudy Inst. Mat. i Mekh. UrO RAN, 2 (1992),  19–26
  187. A reduction theorem for TIsubgroups

    Izv. Akad. Nauk SSSR Ser. Mat., 55:2 (1991),  303–317
  188. Strongly regular graphs with $\lambda=1$

    Mat. Zametki, 44:5 (1988),  667–672
  189. Finite groups of $2$-local $3$-rank $1$

    Sibirsk. Mat. Zh., 29:6 (1988),  100–110
  190. Groups with triangular classes of involutions

    Sibirsk. Mat. Zh., 29:2 (1988),  204–205
  191. On $TI$-subgroups of finite groups

    Izv. Akad. Nauk SSSR Ser. Mat., 50:1 (1986),  22–36
  192. Finite groups

    Itogi Nauki i Tekhniki. Ser. Algebra. Topol. Geom., 24 (1986),  3–120
  193. $3$-characterizations of finite groups

    Algebra Logika, 24:2 (1985),  173–180
  194. Finite groups with a centralizer of order $6$

    Dokl. Akad. Nauk SSSR, 284:6 (1985),  1312–1313
  195. Finite simple groups with a standard subgroup of the type $L_3(4)$

    Mat. Zametki, 37:1 (1985),  7–12
  196. $TI$-subgroups in groups of characteristic 2 type

    Mat. Sb. (N.S.), 127(169):2(6) (1985),  239–244
  197. Finite groups containing thin $2$-local subgroups

    Sibirsk. Mat. Zh., 26:5 (1985),  99–110
  198. A characterization of the Tits simple group

    Trudy Inst. Mat. Sib. Otd. AN SSSR, 4 (1984),  28–49
  199. Finite groups with a self-normalizing subgroup of order 6. II

    Algebra Logika, 22:5 (1983),  518–525
  200. On tightly embedded subgroups of finite groups

    Mat. Sb. (N.S.), 121(163):4(8) (1983),  523–532
  201. Finite groups with bounded involution centralizer

    Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 10,  8–14
  202. Elementary $TI$-subgroups of finite groups

    Mat. Zametki, 30:2 (1981),  179–184
  203. Finite groups with a noninvariant four-core

    Sibirsk. Mat. Zh., 22:2 (1981),  212–214
  204. Finite groups with a sixth-order centralizer. II

    Algebra Logika, 19:2 (1980),  214–223
  205. Finite groups with a self-normalizing subgroup of order six

    Algebra Logika, 19:1 (1980),  91–102
  206. On the generation of finite groups by classes of involutions

    Mat. Sb. (N.S.), 111(153):2 (1980),  266–278
  207. A generalization of Prince's theorem

    Sibirsk. Mat. Zh., 19:1 (1978),  100–107
  208. Finite groups with a sixth order centralizer

    Algebra Logika, 16:4 (1977),  432–442
  209. Groups with a centralizer of sixth order

    Mat. Zametki, 22:1 (1977),  153–159
  210. Finite groups with normal intersections of Sylow $2$-subgroups

    Algebra Logika, 15:6 (1976),  655–659

  211. V. A. Koibaev (on his 70th anniversary)

    Vladikavkaz. Mat. Zh., 27:3 (2025),  136–138
  212. To the 65-th anniversary of prof. A. G. Kusraev

    Vladikavkaz. Mat. Zh., 20:2 (2018),  111–119
  213. Koibaev Vladimir Amurkhanovich (on his 60th birthday)

    Vladikavkaz. Mat. Zh., 17:2 (2015),  68–70
  214. Ivan Ivanovich Eremin

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:2 (2014),  5–12
  215. On the 100th birthday of Sergei Nikolaevich Chernikov

    Trudy Inst. Mat. i Mekh. UrO RAN, 18:3 (2012),  5–9
  216. International conference on “Algebra and geometry” dedicated to the 80th birthday A. I. Starostin

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:4 (2011),  321–325
  217. To the 75th anniversary of academician of Russian Academy of Sciences Yu. S. Osipov

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:2 (2011),  5–6
  218. School-Conference on Group Theory

    Trudy Inst. Mat. i Mekh. UrO RAN, 15:2 (2009),  222–225
  219. On the collaboration of Siberian and Ural mathematicians

    Sib. Èlektron. Mat. Izv., 4 (2007),  22–27
  220. International Conference on group theory deducated to the memory of S. N. Chernikov

    Uspekhi Mat. Nauk, 53:4(322) (1998),  223
  221. IV School on the Theory of Finite Groups

    Uspekhi Mat. Nauk, 40:1(241) (1985),  241–243


© Steklov Math. Inst. of RAS, 2026