RUS  ENG
Full version
PEOPLE

Naumkin Pavel Ivanovich

Publications in Math-Net.Ru

  1. Logarithmic nature of the long-time asymptotics of solutions of a Sobolev-type nonlinear equations with cubic nonlinearities

    Mat. Sb., 214:7 (2023),  134–160
  2. Asymptotics of solutions of a modified Whitham equation with surface tension

    Izv. RAN. Ser. Mat., 83:2 (2019),  174–203
  3. Time decay estimates for solutions of the Cauchy problem for the modified Kawahara equation

    Mat. Sb., 210:5 (2019),  72–108
  4. The dissipative property of a cubic non-linear Schrödinger equation

    Izv. RAN. Ser. Mat., 79:2 (2015),  137–166
  5. Asymptotic expansion of solutions to the periodic problem for a non-linear Sobolev-type equation

    Izv. RAN. Ser. Mat., 77:2 (2013),  97–108
  6. The far-field asymptotics of solutions of a fractional non-linear equation

    Izv. RAN. Ser. Mat., 76:2 (2012),  37–66
  7. Periodic Boundary Value Problem for Nonlinear Sobolev-Type Equations

    Funktsional. Anal. i Prilozhen., 44:3 (2010),  14–26
  8. A boundary-value problem for a non-linear equation with a fractional derivative

    Izv. RAN. Ser. Mat., 73:6 (2009),  101–124
  9. Large-time asymptotic behaviour of solutions of non-linear Sobolev-type equations

    Uspekhi Mat. Nauk, 64:3(387) (2009),  3–72
  10. Asymptotics for nonlinear damped wave equations with large initial data

    Sib. Èlektron. Mat. Izv., 4 (2007),  249–277
  11. The Cauchy problem for an equation of Sobolev type with power non-linearity

    Izv. RAN. Ser. Mat., 69:1 (2005),  61–114
  12. Asymptotics of solutions of non-linear dissipative equations

    Izv. RAN. Ser. Mat., 68:3 (2004),  29–62
  13. Cauchy problem for non-linear systems of equations in the critical case

    Mat. Sb., 195:11 (2004),  31–62
  14. Asymptotics for Nonlinear Evolution Equations with Small Dissipation

    Differ. Uravn., 39:5 (2003),  624–637
  15. Evolution of a step for the Benjamin–Bona–Mahony–Burgers equation

    Dokl. Akad. Nauk, 352:6 (1997),  742–745
  16. Solution asymptotics at large times for the non-linear Schrödinger equation

    Izv. RAN. Ser. Mat., 61:4 (1997),  81–118
  17. A periodic problem for a system of equations describing the conductivity of nerve pulses

    Differ. Uravn., 32:4 (1996),  562–564
  18. Asymptotics as $t\to\infty$ of the solutions of nonlinear equations with nonsmall initial perturbations

    Mat. Zametki, 59:6 (1996),  855–864
  19. Asymptotic behaviour as $t\to \infty$ of the solutions of the generalized Korteweg–de Vries equation

    Mat. Sb., 187:5 (1996),  71–110
  20. On the asymptotic behavior as $t\to\infty$ of the solutions of the generalized Kortweg–de Vries equation

    Dokl. Akad. Nauk, 344:2 (1995),  165–167
  21. On an asymptotic representation of surface waves in the form of two Burgers traveling waves

    Dokl. Akad. Nauk, 340:5 (1995),  602–606
  22. Asymptotic Representation of Surface Waves in the Form of Two Traveling Burgers Waves

    Funktsional. Anal. i Prilozhen., 29:3 (1995),  25–40
  23. On a relation between solutions of different nonlinear equations for large time values

    Dokl. Akad. Nauk, 334:4 (1994),  429–432
  24. An asymptotic relationship between solutions of different nonlinear equations for large time values. II

    Differ. Uravn., 30:8 (1994),  1432–1444
  25. An asymptotic relationship between solutions of different nonlinear equations for large time values. I

    Differ. Uravn., 30:5 (1994),  873–881
  26. On a system of equations that describes nerve conduction

    Dokl. Akad. Nauk, 328:6 (1993),  683–685
  27. On the asymptotic behavior for large time values of the solutions of nonlinear equations in the case of maximal order

    Differ. Uravn., 29:6 (1993),  1071–1074
  28. Asymptotic behavior, for large time values, of the solutions of the Korteweg–de Vries equation with dissipation

    Differ. Uravn., 29:2 (1993),  306–319
  29. Asymptotic, as $t\to\infty$, of the solution of a nonlinear equation with weak dissipation and dispersion

    Izv. RAN. Ser. Mat., 57:6 (1993),  52–63
  30. Large-time asymptotic of solutions of the nonlinear Schrodinger equation in $2+1$ dimensions

    Izv. RAN. Ser. Mat., 57:5 (1993),  197–209
  31. On the stability of solutions of traveling wave type for the Kuramoto–Sivashinskii equation

    Dokl. Akad. Nauk, 323:2 (1992),  266–269
  32. On the destruction of surface waves

    Differ. Uravn., 28:5 (1992),  886–892
  33. Generalized solutions for the Whitham equation

    Differ. Uravn., 28:1 (1992),  121–126
  34. О распаде ступеньки для уравнения Кортевега–де Фриза–Бюргерса

    Funktsional. Anal. i Prilozhen., 26:2 (1992),  88–93
  35. On the asymptotic behavior as $t\to\infty$ of solutions of some nonlinear equations

    Dokl. Akad. Nauk SSSR, 321:2 (1991),  290–293
  36. The step-decay problem for the Korteweg-de Vries-Burgers equation

    Funktsional. Anal. i Prilozhen., 25:1 (1991),  21–32
  37. Asymptotic for large time of solutions of a system of equations for surface waves

    Izv. Akad. Nauk SSSR Ser. Mat., 55:3 (1991),  537–559
  38. The asymptotics as $t\to\infty$ of solutions of a nonlinear nonlocal Schrödinger equation

    Mat. Sb., 182:7 (1991),  1024–1042
  39. On the asymptotic behavior for large time values of solutions of a system of equations of surface waves

    Dokl. Akad. Nauk SSSR, 315:6 (1990),  1357–1360
  40. On a system of equations describing surface waves

    Izv. Akad. Nauk SSSR Ser. Mat., 54:4 (1990),  774–809
  41. The Cauchy problem for the Whitham equation. II

    Mat. Model., 2:9 (1990),  88–104
  42. The Cauchy problem for Whitham equation. I

    Mat. Model., 2:9 (1990),  70–87
  43. Asymptotic behavior of the solutions of the Whithem's equation for large time

    Mat. Model., 2:3 (1990),  75–88
  44. Asymptotic for $t\to\infty$ of solutions to generalized Kolmogorov–Vlasov–Piskunov equation

    Mat. Model., 1:6 (1989),  109–125
  45. Asymptotic behavior, as $t\to\infty,$ of solutions of nonlinear evolution equations with dissipation

    Mat. Zametki, 45:4 (1989),  118–121
  46. A periodic problem for Whitham's equation

    Mat. Sb., 180:7 (1989),  946–968
  47. A system of equations of surface waves

    Dokl. Akad. Nauk SSSR, 301:4 (1988),  788–793
  48. A periodic problem for the Whitham equation

    Dokl. Akad. Nauk SSSR, 299:5 (1988),  1063–1065
  49. Whitham's equation with a singular kernel

    Zh. Vychisl. Mat. Mat. Fiz., 27:4 (1987),  633–636
  50. On the existence and destruction of waves that can be described by the Whitham equation

    Dokl. Akad. Nauk SSSR, 288:1 (1986),  90–95
  51. The Whitham equation with a singular kernel and small interaction

    Differ. Uravn., 21:10 (1985),  1818–1819
  52. Breaking of waves for the Whitham equation with singular kernel. II

    Differ. Uravn., 21:10 (1985),  1775–1790
  53. Breaking of waves for the Whitham equation with singular kernel. I

    Differ. Uravn., 21:3 (1985),  499–508
  54. On the Cauchy problem for the Whitham equation

    Dokl. Akad. Nauk SSSR, 273:4 (1983),  804–807
  55. On the breaking of waves for the Whitham equation

    Dokl. Akad. Nauk SSSR, 265:4 (1982),  809–811


© Steklov Math. Inst. of RAS, 2026