RUS  ENG
Full version
PEOPLE

Matveev Vladimir Sergeevich

Publications in Math-Net.Ru

  1. Real Analyticity of 2-Dimensional Superintegrable Metrics and Solution of Two Bolsinov – Kozlov – Fomenko Conjectures

    Regul. Chaotic Dyn., 30:4 (2025),  677–687
  2. If a Minkowski billiard is projective, then it is the standard billiard

    Mat. Sb., 216:5 (2025),  64–82
  3. On the existence of geodesic vector fields on closed surfaces

    Theor. Appl. Mech., 52:1 (2025),  109–113
  4. Quantum integrability for the Beltrami–Laplace operators of projectively equivalent metrics of arbitrary signatures

    Chebyshevskii Sb., 21:2 (2020),  275–289
  5. On the number of nontrivial projective transformations of closed manifolds

    Fundam. Prikl. Mat., 20:2 (2015),  125–131
  6. On the dimension of the group of projective transformations of closed randers and Riemannian manifolds

    SIGMA, 8 (2012), 007, 4 pp.
  7. On the Degree of Geodesic Mobility for Riemannian Metrics

    Mat. Zametki, 87:4 (2010),  628–629
  8. The eigenvalues of the Sinyukov mapping for geodesically equivalent metrics are globally ordered

    Mat. Zametki, 77:3 (2005),  412–423
  9. Geodesic equivalence of metrics as a particular case of integrability of geodesic flows

    TMF, 123:2 (2000),  285–293
  10. Dynamical and Topological Methods in Theory of Geodesically Equivalent Metrics

    Zap. Nauchn. Sem. POMI, 266 (2000),  155–168
  11. On Integrals of the Third Degree in Momenta

    Regul. Chaotic Dyn., 4:3 (1999),  35–44
  12. Algorithmic classification of invariant neighborhoods of points of saddle-saddle type

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1999, no. 2,  62–65
  13. The asymptotic eigenfunctions of the operator $\nabla D(x,y)\nabla$ corresponding to Liouville metrics and waves on water captured by bottom irregularities

    Mat. Zametki, 64:3 (1998),  414–422
  14. Geodesical equivalence and the Liouville integration of the geodesic flows

    Regul. Chaotic Dyn., 3:2 (1998),  30–45
  15. Two-dimensional Riemannian metrics with integrable geodesic flows. Local and global geometry

    Mat. Sb., 189:10 (1998),  5–32
  16. A metric on a sphere that is geodesically equivalent to itself a metric of constant curvature is a metric of constant curvature

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1998, no. 5,  53–55
  17. Conjugate points of hyperbolic geodesics of square integrable geodesic flows on closed surfaces

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1998, no. 1,  60–62
  18. Geodesic Flows on the Klein Bottle, Integrable by Polynomials in Momenta of Degree Four

    Regul. Chaotic Dyn., 2:2 (1997),  106–112
  19. Jacobi Vector Fields of Integrable Geodesic Flows

    Regul. Chaotic Dyn., 2:1 (1997),  103–116
  20. Quadratically Integrable Geodesic Flows on the Torus and on the Klein Bottle

    Regul. Chaotic Dyn., 2:1 (1997),  96–102
  21. An example of a geodesic flow on the Klein bottle, integrable by a polynomial in the momentum of the fourth degree

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1997, no. 4,  47–48
  22. Integrable Hamiltonian system with two degrees of freedom. The topological structure of saturated neighbourhoods of points of focus-focus and saddle-saddle type

    Mat. Sb., 187:4 (1996),  29–58
  23. Singularities of momentum maps of integrable Hamiltonian systems with two degrees of freedom

    Zap. Nauchn. Sem. POMI, 235 (1996),  54–86


© Steklov Math. Inst. of RAS, 2026