RUS  ENG
Full version
PEOPLE

Starovoitov Alexander Pavlovich

Publications in Math-Net.Ru

  1. On the asymptotics of convergence of trigonometric Hermite–Jacobi approximations and nonlinear Hermite–Chebyshev approximations

    PFMT, 2025, no. 2(63),  56–61
  2. Uniqueness and explicit form of Hermite–Chebyshev linear approximations

    PFMT, 2025, no. 1(62),  102–107
  3. Existence and explicit form of nonlinear Hermite–Chebyshev approximations

    Proceedings of the Institute of Mathematics of the NAS of Belarus, 33:1 (2025),  75–86
  4. Rational approximations of power series, trigonometric series and series of Chebyshev polynomials

    Journal of the Belarusian State University. Mathematics and Informatics, 3 (2024),  6–21
  5. On the existence of trigonometric Padé approximations

    PFMT, 2024, no. 3(60),  71–76
  6. Rational approximations of Laurent series

    PFMT, 2024, no. 1(58),  68–73
  7. On the existence of trigonometric Hermite – Jacobi approximations and non-linear Hermite – Chebyshev approximations

    Journal of the Belarusian State University. Mathematics and Informatics, 2 (2023),  6–17
  8. Polyorthogonalization of a Function System

    Mat. Zametki, 113:2 (2023),  316–320
  9. Existence and uniqueness of consistent Hermite – Fourier approximations

    PFMT, 2023, no. 2(55),  68–73
  10. The analogue of Jacobi's theorem for simultaneous Hermitian interpolation of several functions

    PFMT, 2023, no. 1(54),  89–92
  11. On determinant representations of Hermite–Padé polynomials

    Tr. Mosk. Mat. Obs., 83:1 (2022),  17–35
  12. On polyorthogonal functions of the first type

    PFMT, 2022, no. 2(51),  94–98
  13. Polyorthogonal systems of functions

    PFMT, 2022, no. 1(50),  89–93
  14. About the convergence rate Hermite – Padé approximants of exponential functions

    Izv. Saratov Univ. Math. Mech. Inform., 21:2 (2021),  162–172
  15. On the explicit representation of polyorthogonal polynomials

    Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 4,  80–89
  16. Analogs of Schmidt's Formula for Polyorthogonal Polynomials of the First Type

    Mat. Zametki, 110:3 (2021),  424–433
  17. Rational approximation of the Mittag-Leffler functions

    PFMT, 2021, no. 1(46),  65–68
  18. A criterion for the existence and uniqueness of polyorthogonal polynomials of the first type

    PFMT, 2020, no. 3(44),  82–86
  19. A criterion for the existence and uniqueness of polyorthogonal polynomials of the second type

    PFMT, 2020, no. 2(43),  85–90
  20. On the existence and uniqueness of type i Hermite–Padé polynomials

    PFMT, 2019, no. 3(40),  100–103
  21. On the existence and uniqueness of type II Hermite–Padé polynomials

    PFMT, 2019, no. 2(39),  92–96
  22. Speed of convergence of quadratic Hermite–Padé approximations confluent hypergeometric functions

    PFMT, 2018, no. 1(34),  71–78
  23. Hermite–Padé approximants of the Mittag-Leffler functions

    Trudy Mat. Inst. Steklova, 301 (2018),  241–258
  24. Asymptotics of Diagonal Hermite–Padé Polynomials for the Collection of Exponential Functions

    Mat. Zametki, 102:2 (2017),  302–315
  25. Asymptotics of Hermite–Padé degenerate hypergeometric functions

    PFMT, 2017, no. 2(31),  69–74
  26. Asymptotics of the type II Hermite–Padé approximation of exponential functions with complex multipliers in the exponent

    PFMT, 2017, no. 1(30),  73–77
  27. On Some Properties of Hermite–Padé Approximants to an Exponential System

    Trudy Mat. Inst. Steklova, 298 (2017),  338–355
  28. Upper Bounds for the Moduli of Zeros of Hermite–Padé Approximations for a Set of Exponential Functions

    Mat. Zametki, 99:3 (2016),  409–420
  29. Asymptotics of Hermite–Padé approximation of exponential functions with complex multipliers in the exponent

    PFMT, 2016, no. 2(27),  61–67
  30. Hermite-Padé approximation of exponential functions

    Mat. Sb., 207:6 (2016),  3–26
  31. On localization of the zeroes Hermite–Padé approximants to the exponential functions

    PFMT, 2015, no. 3(24),  84–89
  32. Quadratic Hermite–Padé Approximants of Exponential Functions

    Izv. Saratov Univ. Math. Mech. Inform., 14:4(1) (2014),  387–395
  33. On asymptotic form of the Hermite–Pade approximations for a system of Mittag-Leffler functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 9,  59–68
  34. Asymptotics of quadratic Hermite–Padé approximants of the exponential functions

    PFMT, 2014, no. 1(18),  74–80
  35. Hermitian Approximation of Two Exponents

    Izv. Saratov Univ. Math. Mech. Inform., 13:1(2) (2013),  87–91
  36. Hermite–Pade approximants of the system Mittag-Leffler functions

    PFMT, 2013, no. 1(14),  81–87
  37. Hermitian approximation of two exponents

    PFMT, 2012, no. 1(10),  97–100
  38. Approximation of continuous functions by rational Pad–Chebyshev fractions

    PFMT, 2011, no. 1(6),  69–78
  39. Determinant representation of Pade joint approximations

    PFMT, 2010, no. 4(5),  46–49
  40. Rational approximation of Markov functions generated by Borelean power-type measures

    PFMT, 2009, no. 1(1),  69–73
  41. Trigonometric Padé approximants for functions with regularly decreasing Fourier coefficients

    Mat. Sb., 200:7 (2009),  107–130
  42. On the Asymptotics of the Rows of the Padé Table of Analytic Functions with Logarithmic Branch Points

    Mat. Zametki, 84:3 (2008),  409–419
  43. Padé approximants of the Mittag-Leffler functions

    Mat. Sb., 198:7 (2007),  109–122
  44. Rational Approximations of Riemann–Liouville and Weyl Fractional Integrals

    Mat. Zametki, 78:3 (2005),  428–441
  45. Existence of Continuous Functions with a Given Order of Decrease of Least Deviations from Rational Approximations

    Mat. Zametki, 74:5 (2003),  745–751
  46. Coincidence of Least Uniform Deviations of Functions from Polynomials and Rational Fractions

    Mat. Zametki, 74:4 (2003),  612–617
  47. Remark on a Problem of Rational Approximation

    Mat. Zametki, 74:3 (2003),  446–448
  48. Padé approximants for entire functions with regularly decreasing Taylor coefficients

    Mat. Sb., 193:9 (2002),  63–92
  49. On the Problem of Describing Sequences of Best Trigonometric Rational Approximations

    Mat. Zametki, 69:6 (2001),  919–924
  50. On the problem of the description of sequences of best rational trigonometric approximations

    Mat. Sb., 191:6 (2000),  145–154
  51. Asymptotic behaviour of the Hadamard determinants and the behaviour of the rows of the Padé and Chebyshev tables for a sum of exponentials

    Mat. Sb., 187:2 (1996),  141–157
  52. Comparison of the rates of rational and polynomial approximations of differentiable functions

    Mat. Zametki, 44:4 (1988),  528–535


© Steklov Math. Inst. of RAS, 2026