|
|
Publications in Math-Net.Ru
-
Completeness of the factor group of a complete topological group and completeness of the factor ring of a complete topological ring by a compact normal subgroup and a compact ideal, respectively
Bul. Acad. Ştiinţe Repub. Mold. Mat., 2025, no. 1, 88–93
-
Completeness of the factor group of a complete topological Abelian group by a discrete subgroup
Bul. Acad. Ştiinţe Repub. Mold. Mat., 2024, no. 1-2, 137–140
-
On factor-rings of complete topological rings
Fundam. Prikl. Mat., 24:3 (2023), 3–9
-
Properties of coverings in lattices of ring topologies
Bul. Acad. Ştiinţe Repub. Mold. Mat., 2022, no. 1, 66–74
-
On non-discrete topologization of some countable skew fields
Bul. Acad. Ştiinţe Repub. Mold. Mat., 2021, no. 1-2, 84–92
-
On the number of topologies on countable skew fields
Bul. Acad. Ştiinţe Repub. Mold. Mat., 2020, no. 1, 63–74
-
Properties of generalized nilpotent elements of pseudo-normed commutative rings
Fundam. Prikl. Mat., 23:3 (2020), 3–11
-
On the number of topologies on countable fields
Bul. Acad. Ştiinţe Repub. Mold. Mat., 2019, no. 1, 79–90
-
Properties of finite unrefinable chains of ring topologies for nilpotent rings
Bul. Acad. Ştiinţe Repub. Mold. Mat., 2018, no. 1, 67–75
-
Unrefinable chains when taking the infimum in the lattice of ring topologies for a nilpotent ring
Bul. Acad. Ştiinţe Repub. Mold. Mat., 2017, no. 2, 71–76
-
Properties of accessible subrings of pseudonormed rings when taking quotient rings
Bul. Acad. Ştiinţe Repub. Mold. Mat., 2017, no. 2, 42–53
-
Lattice of all topologies of countable module over countable rings
Bul. Acad. Ştiinţe Repub. Mold. Mat., 2016, no. 2, 63–70
-
On the number of ring topologies on countable rings
Bul. Acad. Ştiinţe Repub. Mold. Mat., 2015, no. 1, 103–114
-
On the number of group topologies on countable groups
Bul. Acad. Ştiinţe Repub. Mold. Mat., 2014, no. 1, 101–112
-
On the number of metrizable group topologies on countable groups
Bul. Acad. Ştiinţe Repub. Mold. Mat., 2013, no. 2-3, 17–26
-
Properties of covers in the lattice of group topologies for nilpotent groups
Bul. Acad. Ştiinţe Repub. Mold. Mat., 2012, no. 3, 38–44
-
Method of construction of topologies on any finite set
Bul. Acad. Ştiinţe Repub. Mold. Mat., 2012, no. 2, 29–42
-
Estimation of the number of one-point expansions of a topology which is given on a finite set
Bul. Acad. Ştiinţe Repub. Mold. Mat., 2011, no. 2, 17–22
-
Method for constructing one-point expansions of a topology on a finite set and its applications
Bul. Acad. Ştiinţe Repub. Mold. Mat., 2010, no. 3, 67–76
-
Properties of final unrefinable chains of groups topologies
Bul. Acad. Ştiinţe Repub. Mold. Mat., 2010, no. 2, 3–19
-
Properties of finite unrefinable chains of ring topologies
Fundam. Prikl. Mat., 16:8 (2010), 5–16
-
About group topologies of the primary Abelian group of finite period which coincide on a subgroup and on the factor group
Bul. Acad. Ştiinţe Repub. Mold. Mat., 2009, no. 2, 19–28
-
Properties of one-sided ideals of pseudonormed rings when taking the quotient rings
Bul. Acad. Ştiinţe Repub. Mold. Mat., 2008, no. 3, 3–8
-
Properties of accessible subrings of topological rings when taking quotient rings
Bul. Acad. Ştiinţe Repub. Mold. Mat., 2007, no. 2, 4–18
-
Lattices of topologies of algebraic systems
Algebra Discrete Math., 2006, no. 2, 1–16
-
Quotient rings of pseudonormed rings
Bul. Acad. Ştiinţe Repub. Mold. Mat., 2006, no. 2, 3–16
-
Properties of one-sided ideals of topological rings
Bul. Acad. Ştiinţe Repub. Mold. Mat., 2006, no. 1, 3–14
-
On coverings in the lattice of all group topologies of arbitrary Abelian groups
Sibirsk. Mat. Zh., 47:5 (2006), 961–973
-
Semitopological isomorphism of topological groups
Bul. Acad. Ştiinţe Repub. Mold. Mat., 2004, no. 1, 15–25
-
On overnilpotent radicals of topological rings
Bul. Acad. Ştiinţe Repub. Mold. Mat., 2004, no. 1, 3–14
-
On disjoint sums in the lattice of linear topologies
Fundam. Prikl. Mat., 9:1 (2003), 3–18
-
On Prebox Module Topologies
Mat. Zametki, 74:1 (2003), 12–18
-
On maximal chains in the lattice of module topologies
Sibirsk. Mat. Zh., 42:3 (2001), 491–506
-
On the completeness of topological rings in maximal topologies
Mat. Sb., 187:2 (1996), 3–18
-
On the uniqueness of topologies for some constructions of rings and modules
Sibirsk. Mat. Zh., 36:4 (1995), 735–751
-
Questions on the possibility of extending the topologies of a ring and of a semigroup to their semigroup ring
Trudy Mat. Inst. Steklov., 193 (1992), 22–27
-
Strengthening the group topology of a countable group up to a general group
Sibirsk. Mat. Zh., 31:1 (1990), 3–13
-
Compact groups and their group rings
Mat. Zametki, 46:6 (1989), 3–9
-
On the extension of the ring topology of a $\sigma$-bounded field to a simple transcendental extension of the field
Mat. Sb. (N.S.), 133(175):3(7) (1987), 275–292
-
On the problem of extending the topologies of a group and a ring to their group ring
Uspekhi Mat. Nauk, 40:4(244) (1985), 135–136
-
Necessary conditions for the extension of a group and a field topology to their group algebra
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1984, no. 6, 58–61
-
Sufficient conditions for extension of topologies of a group and a ring to their group ring
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1983, no. 5, 25–33
-
Extension of a locally bounded field topology to a prime
transcendental extension of the field
Algebra Logika, 20:5 (1981), 511–521
-
Topologies on a ring of polynomials, and a topological analogue of the Hilbert basis theorem
Mat. Sb. (N.S.), 116(158):4(12) (1981), 467–482
-
Associative rings
Itogi Nauki i Tekhniki. Ser. Algebra. Topol. Geom., 16 (1978), 91–190
-
Weakly Boolean topological rings
Dokl. Akad. Nauk SSSR, 228:6 (1976), 1265–1268
-
Extension of a locally bounded topology on a field to algebraic extensions of the field
Dokl. Akad. Nauk SSSR, 216:3 (1974), 477–480
-
Wedderburn decomposition of hereditarily linearly compact rings
Dokl. Akad. Nauk SSSR, 211:1 (1973), 15–18
-
Nondiscrete topologizability of infinite commutative rings
Dokl. Akad. Nauk SSSR, 194:5 (1970), 991–994
-
Nondiscrete topologizability of countable rings
Dokl. Akad. Nauk SSSR, 191:4 (1970), 747–750
-
Topologies of countable rings
Sibirsk. Mat. Zh., 9:6 (1968), 1251–1262
-
Rings
Itogi Nauki. Ser. Mat. Algebra. Topol. Geom. 1965, 1967, 133–180
-
Invertibility in topological rings
Dokl. Akad. Nauk SSSR, 170:4 (1966), 755–758
-
A criterion of pseudonormability of topological rings
Algebra i Logika. Sem., 4:4 (1965), 3–24
-
On the theory of topological rings
Sibirsk. Mat. Zh., 6:2 (1965), 249–261
-
On the theory of topological rings
Dokl. Akad. Nauk SSSR, 157:1 (1964), 12–15
-
The topological Baer radical and the decomposition of a ring
Sibirsk. Mat. Zh., 5:6 (1964), 1209–1227
-
Vladimir Aleksandrovich Andrunakievich (on his seventieth birthday)
Uspekhi Mat. Nauk, 43:1(259) (1988), 219–220
-
Vladimir Aleksandrovich Andrunakievich (on his sixtieth birthday)
Uspekhi Mat. Nauk, 32:4(196) (1977), 271–275
© , 2026