RUS  ENG
Full version
PEOPLE

Arnautov Vladimir Ivanovich

Publications in Math-Net.Ru

  1. Completeness of the factor group of a complete topological group and completeness of the factor ring of a complete topological ring by a compact normal subgroup and a compact ideal, respectively

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2025, no. 1,  88–93
  2. Completeness of the factor group of a complete topological Abelian group by a discrete subgroup

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2024, no. 1-2,  137–140
  3. On factor-rings of complete topological rings

    Fundam. Prikl. Mat., 24:3 (2023),  3–9
  4. Properties of coverings in lattices of ring topologies

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2022, no. 1,  66–74
  5. On non-discrete topologization of some countable skew fields

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2021, no. 1-2,  84–92
  6. On the number of topologies on countable skew fields

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2020, no. 1,  63–74
  7. Properties of generalized nilpotent elements of pseudo-normed commutative rings

    Fundam. Prikl. Mat., 23:3 (2020),  3–11
  8. On the number of topologies on countable fields

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2019, no. 1,  79–90
  9. Properties of finite unrefinable chains of ring topologies for nilpotent rings

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2018, no. 1,  67–75
  10. Unrefinable chains when taking the infimum in the lattice of ring topologies for a nilpotent ring

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2017, no. 2,  71–76
  11. Properties of accessible subrings of pseudonormed rings when taking quotient rings

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2017, no. 2,  42–53
  12. Lattice of all topologies of countable module over countable rings

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2016, no. 2,  63–70
  13. On the number of ring topologies on countable rings

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2015, no. 1,  103–114
  14. On the number of group topologies on countable groups

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2014, no. 1,  101–112
  15. On the number of metrizable group topologies on countable groups

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2013, no. 2-3,  17–26
  16. Properties of covers in the lattice of group topologies for nilpotent groups

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2012, no. 3,  38–44
  17. Method of construction of topologies on any finite set

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2012, no. 2,  29–42
  18. Estimation of the number of one-point expansions of a topology which is given on a finite set

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2011, no. 2,  17–22
  19. Method for constructing one-point expansions of a topology on a finite set and its applications

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2010, no. 3,  67–76
  20. Properties of final unrefinable chains of groups topologies

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2010, no. 2,  3–19
  21. Properties of finite unrefinable chains of ring topologies

    Fundam. Prikl. Mat., 16:8 (2010),  5–16
  22. About group topologies of the primary Abelian group of finite period which coincide on a subgroup and on the factor group

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2009, no. 2,  19–28
  23. Properties of one-sided ideals of pseudonormed rings when taking the quotient rings

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2008, no. 3,  3–8
  24. Properties of accessible subrings of topological rings when taking quotient rings

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2007, no. 2,  4–18
  25. Lattices of topologies of algebraic systems

    Algebra Discrete Math., 2006, no. 2,  1–16
  26. Quotient rings of pseudonormed rings

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2006, no. 2,  3–16
  27. Properties of one-sided ideals of topological rings

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2006, no. 1,  3–14
  28. On coverings in the lattice of all group topologies of arbitrary Abelian groups

    Sibirsk. Mat. Zh., 47:5 (2006),  961–973
  29. Semitopological isomorphism of topological groups

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2004, no. 1,  15–25
  30. On overnilpotent radicals of topological rings

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2004, no. 1,  3–14
  31. On disjoint sums in the lattice of linear topologies

    Fundam. Prikl. Mat., 9:1 (2003),  3–18
  32. On Prebox Module Topologies

    Mat. Zametki, 74:1 (2003),  12–18
  33. On maximal chains in the lattice of module topologies

    Sibirsk. Mat. Zh., 42:3 (2001),  491–506
  34. On the completeness of topological rings in maximal topologies

    Mat. Sb., 187:2 (1996),  3–18
  35. On the uniqueness of topologies for some constructions of rings and modules

    Sibirsk. Mat. Zh., 36:4 (1995),  735–751
  36. Questions on the possibility of extending the topologies of a ring and of a semigroup to their semigroup ring

    Trudy Mat. Inst. Steklov., 193 (1992),  22–27
  37. Strengthening the group topology of a countable group up to a general group

    Sibirsk. Mat. Zh., 31:1 (1990),  3–13
  38. Compact groups and their group rings

    Mat. Zametki, 46:6 (1989),  3–9
  39. On the extension of the ring topology of a $\sigma$-bounded field to a simple transcendental extension of the field

    Mat. Sb. (N.S.), 133(175):3(7) (1987),  275–292
  40. On the problem of extending the topologies of a group and a ring to their group ring

    Uspekhi Mat. Nauk, 40:4(244) (1985),  135–136
  41. Necessary conditions for the extension of a group and a field topology to their group algebra

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1984, no. 6,  58–61
  42. Sufficient conditions for extension of topologies of a group and a ring to their group ring

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1983, no. 5,  25–33
  43. Extension of a locally bounded field topology to a prime transcendental extension of the field

    Algebra Logika, 20:5 (1981),  511–521
  44. Topologies on a ring of polynomials, and a topological analogue of the Hilbert basis theorem

    Mat. Sb. (N.S.), 116(158):4(12) (1981),  467–482
  45. Associative rings

    Itogi Nauki i Tekhniki. Ser. Algebra. Topol. Geom., 16 (1978),  91–190
  46. Weakly Boolean topological rings

    Dokl. Akad. Nauk SSSR, 228:6 (1976),  1265–1268
  47. Extension of a locally bounded topology on a field to algebraic extensions of the field

    Dokl. Akad. Nauk SSSR, 216:3 (1974),  477–480
  48. Wedderburn decomposition of hereditarily linearly compact rings

    Dokl. Akad. Nauk SSSR, 211:1 (1973),  15–18
  49. Nondiscrete topologizability of infinite commutative rings

    Dokl. Akad. Nauk SSSR, 194:5 (1970),  991–994
  50. Nondiscrete topologizability of countable rings

    Dokl. Akad. Nauk SSSR, 191:4 (1970),  747–750
  51. Topologies of countable rings

    Sibirsk. Mat. Zh., 9:6 (1968),  1251–1262
  52. Rings

    Itogi Nauki. Ser. Mat. Algebra. Topol. Geom. 1965, 1967,  133–180
  53. Invertibility in topological rings

    Dokl. Akad. Nauk SSSR, 170:4 (1966),  755–758
  54. A criterion of pseudonormability of topological rings

    Algebra i Logika. Sem., 4:4 (1965),  3–24
  55. On the theory of topological rings

    Sibirsk. Mat. Zh., 6:2 (1965),  249–261
  56. On the theory of topological rings

    Dokl. Akad. Nauk SSSR, 157:1 (1964),  12–15
  57. The topological Baer radical and the decomposition of a ring

    Sibirsk. Mat. Zh., 5:6 (1964),  1209–1227

  58. Vladimir Aleksandrovich Andrunakievich (on his seventieth birthday)

    Uspekhi Mat. Nauk, 43:1(259) (1988),  219–220
  59. Vladimir Aleksandrovich Andrunakievich (on his sixtieth birthday)

    Uspekhi Mat. Nauk, 32:4(196) (1977),  271–275


© Steklov Math. Inst. of RAS, 2026