RUS  ENG
Full version
PEOPLE

Mishchenko Sergei Petrovich

Publications in Math-Net.Ru

  1. Codimension sequences and their asymptotic behavior

    Fundam. Prikl. Mat., 22:4 (2019),  115–127
  2. Variety with fractional codimension growth and the Specht problem

    Chebyshevskii Sb., 19:1 (2018),  176–186
  3. Sturmian words and uncountable set of almost nilpotent varieties of quadratic growth

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2017, no. 6,  55–59
  4. Infinite periodic words and almost nilpotent varieties

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2017, no. 4,  62–66
  5. On varieties with identities of one generated free metabelian algebra

    Chebyshevskii Sb., 17:2 (2016),  21–55
  6. On the varieties of commutative metabelian algebras

    Fundam. Prikl. Mat., 21:1 (2016),  165–180
  7. Almost nilpotent varieties with non-integer exponents do exist

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2016, no. 3,  42–46
  8. Almost nilpotent varieties of arbitrary integer exponent

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2015, no. 2,  53–57
  9. On almost nilpotent varieties in the class of commutative metabelian algebras

    Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2015, no. 3(125),  21–28
  10. Some Extremal Properties of the Variety of Leibniz Algebras Left Nilpotent of Class at Most Three

    Mat. Zametki, 95:6 (2014),  867–877
  11. Basis of multilinear part of Leibniz algebras manifolds $\widetilde{\mathrm{V}}_1$

    Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2014, no. 3(114),  76–82
  12. PI-exponents of some simple algebras with unit

    Fundam. Prikl. Mat., 18:4 (2013),  121–128
  13. Example of a linear algebra variety with the polynomial growth lower than three

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2013, no. 3,  51–54
  14. New properties of the Lie algebra variety $\mathbf N_2\mathbf A$

    Fundam. Prikl. Mat., 17:7 (2012),  165–173
  15. A sufficient condition for coincidence of lower and upper exponents of the variety of linear algebras

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2011, no. 2,  36–39
  16. The Variety of Jordan Algebras Determined by the Identity $(xy)(zt)\equiv0$ Has Almost Polynomial Growth

    Mat. Zametki, 87:6 (2010),  877–884
  17. The Leibniz algebras of almost polynomial growth with the identity $x(y(zt))\equiv0$

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2010, no. 3,  18–23
  18. Varieties of linear algebras with colength one

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2010, no. 1,  25–30
  19. Identities for Lie superalgebras with a nilpotent commutator subalgebra

    Algebra Logika, 47:5 (2008),  617–645
  20. An example of a variety of linear algebras with fractional-polynomial growth

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2008, no. 1,  25–31
  21. Growth of some varieties of Lie superalgebras

    Izv. RAN. Ser. Mat., 71:4 (2007),  3–18
  22. Necessary and sufficient conditions for a variety of Leibniz algebras to have polynomial growth

    Fundam. Prikl. Mat., 12:8 (2006),  207–215
  23. Colength of varieties of linear algebras

    Mat. Zametki, 79:4 (2006),  553–559
  24. On the polynomial growth of the colength of varieties of Lie algebras

    Algebra Logika, 38:2 (1999),  161–175
  25. Asymptotic behaviour of the colength growth functions of varieties of Lie algebras

    Uspekhi Mat. Nauk, 54:3(327) (1999),  161–162
  26. A new extremal property of the variety $\mathbf{AN}_2$ of Lie algebras

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1999, no. 5,  15–18
  27. A criterion for polynomial growth of varieties of Lie superalgebras

    Izv. RAN. Ser. Mat., 62:5 (1998),  103–116
  28. A sufficient condition for the nilpotence of the commutant of a Lie algebra

    Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 8,  43–47
  29. Varieties of Lie superalgebras of polynomial growth

    Uspekhi Mat. Nauk, 52:2(314) (1997),  165–166
  30. Lower bound on the dimensions or irreducible representations of symmetric groups and on the exponents of varieties of Lie algebras

    Mat. Sb., 187:1 (1996),  83–94
  31. Standard Lie identity in solvable varieties of associative type

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1995, no. 4,  30–36
  32. On the standard identity in solvable Lie algebras of degree three

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1993, no. 5,  63–66
  33. Colored Young diagrams

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1993, no. 1,  90–91
  34. Varieties of solvable Lie algebras with a distributive lattice of subvarieties

    Mat. Zametki, 52:2 (1992),  92–100
  35. On varieties of Lie algebras not containing a three-dimensional simple algebra

    Mat. Sb., 183:6 (1992),  87–96
  36. On some classes of Lie algebras

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1992, no. 3,  55–57
  37. Identities of finite-dimensional nilpotent Lie algebras

    Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 10,  36–39
  38. Varieties of solvable Lie algebras

    Dokl. Akad. Nauk SSSR, 313:6 (1990),  1345–1348
  39. A variant of a theorem on height for Lie algebras

    Mat. Zametki, 47:4 (1990),  83–89
  40. Growth in varieties of Lie algebras

    Uspekhi Mat. Nauk, 45:6(276) (1990),  25–45
  41. On solvable subvarieties of the variety generated by the Witt algebra

    Mat. Sb. (N.S.), 136(178):3(7) (1988),  413–425
  42. Varieties of polynomial growth of Lie algebras over a field of characteristic zero

    Mat. Zametki, 40:6 (1986),  713–721
  43. On the Engel problem

    Mat. Sb. (N.S.), 124(166):1(5) (1984),  56–67
  44. The Engel identity and its application

    Mat. Sb. (N.S.), 121(163):3(7) (1983),  423–430
  45. Varieties of hypercentral-metabelian Lie algebras over a field of characteristic zero

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1983, no. 5,  33–37
  46. Varieties of Lie algebras with weak growth of the sequence of codimensions

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1982, no. 5,  63–66
  47. Varieties of centrally metabelian Lie algebras over a field of characteristic zero

    Mat. Zametki, 30:5 (1981),  649–657

  48. Alexey Yakovlevich Kanel-Belov

    Chebyshevskii Sb., 24:4 (2023),  380–400
  49. Victor Nikolaevich Latyshev (obituary)

    Uspekhi Mat. Nauk, 77:1(463) (2022),  177–182


© Steklov Math. Inst. of RAS, 2026