|
|
Publications in Math-Net.Ru
-
Codimension sequences and their asymptotic behavior
Fundam. Prikl. Mat., 22:4 (2019), 115–127
-
Variety with fractional codimension growth
and the Specht problem
Chebyshevskii Sb., 19:1 (2018), 176–186
-
Sturmian words and uncountable set of almost nilpotent varieties of quadratic growth
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2017, no. 6, 55–59
-
Infinite periodic words and almost nilpotent varieties
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2017, no. 4, 62–66
-
On varieties with identities of one generated free metabelian algebra
Chebyshevskii Sb., 17:2 (2016), 21–55
-
On the varieties of commutative metabelian algebras
Fundam. Prikl. Mat., 21:1 (2016), 165–180
-
Almost nilpotent varieties with non-integer exponents do exist
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2016, no. 3, 42–46
-
Almost nilpotent varieties of arbitrary integer exponent
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2015, no. 2, 53–57
-
On almost nilpotent varieties in the class of commutative metabelian algebras
Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2015, no. 3(125), 21–28
-
Some Extremal Properties of the Variety of Leibniz Algebras Left Nilpotent of Class at Most Three
Mat. Zametki, 95:6 (2014), 867–877
-
Basis of multilinear part of Leibniz algebras manifolds $\widetilde{\mathrm{V}}_1$
Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2014, no. 3(114), 76–82
-
PI-exponents of some simple algebras with unit
Fundam. Prikl. Mat., 18:4 (2013), 121–128
-
Example of a linear algebra variety with the polynomial growth lower than three
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2013, no. 3, 51–54
-
New properties of the Lie algebra variety $\mathbf N_2\mathbf A$
Fundam. Prikl. Mat., 17:7 (2012), 165–173
-
A sufficient condition for coincidence of lower and upper exponents of the variety of linear algebras
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2011, no. 2, 36–39
-
The Variety of Jordan Algebras Determined by the Identity $(xy)(zt)\equiv0$ Has Almost Polynomial Growth
Mat. Zametki, 87:6 (2010), 877–884
-
The Leibniz algebras of almost polynomial growth with the identity $x(y(zt))\equiv0$
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2010, no. 3, 18–23
-
Varieties of linear algebras with colength one
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2010, no. 1, 25–30
-
Identities for Lie superalgebras with a nilpotent commutator subalgebra
Algebra Logika, 47:5 (2008), 617–645
-
An example of a variety of linear algebras with fractional-polynomial growth
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2008, no. 1, 25–31
-
Growth of some varieties of Lie superalgebras
Izv. RAN. Ser. Mat., 71:4 (2007), 3–18
-
Necessary and sufficient conditions for a variety of Leibniz algebras to have polynomial growth
Fundam. Prikl. Mat., 12:8 (2006), 207–215
-
Colength of varieties of linear algebras
Mat. Zametki, 79:4 (2006), 553–559
-
On the polynomial growth of the colength of varieties of Lie
algebras
Algebra Logika, 38:2 (1999), 161–175
-
Asymptotic behaviour of the colength growth functions of varieties of Lie algebras
Uspekhi Mat. Nauk, 54:3(327) (1999), 161–162
-
A new extremal property of the variety $\mathbf{AN}_2$ of Lie algebras
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1999, no. 5, 15–18
-
A criterion for polynomial growth of varieties of Lie superalgebras
Izv. RAN. Ser. Mat., 62:5 (1998), 103–116
-
A sufficient condition for the nilpotence of the commutant of a Lie algebra
Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 8, 43–47
-
Varieties of Lie superalgebras of polynomial growth
Uspekhi Mat. Nauk, 52:2(314) (1997), 165–166
-
Lower bound on the dimensions or irreducible representations of symmetric groups and on the exponents of varieties of Lie algebras
Mat. Sb., 187:1 (1996), 83–94
-
Standard Lie identity in solvable varieties of associative type
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1995, no. 4, 30–36
-
On the standard identity in solvable Lie algebras of degree three
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1993, no. 5, 63–66
-
Colored Young diagrams
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1993, no. 1, 90–91
-
Varieties of solvable Lie algebras with a distributive lattice of subvarieties
Mat. Zametki, 52:2 (1992), 92–100
-
On varieties of Lie algebras not containing a three-dimensional simple algebra
Mat. Sb., 183:6 (1992), 87–96
-
On some classes of Lie algebras
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1992, no. 3, 55–57
-
Identities of finite-dimensional nilpotent Lie algebras
Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 10, 36–39
-
Varieties of solvable Lie algebras
Dokl. Akad. Nauk SSSR, 313:6 (1990), 1345–1348
-
A variant of a theorem on height for Lie algebras
Mat. Zametki, 47:4 (1990), 83–89
-
Growth in varieties of Lie algebras
Uspekhi Mat. Nauk, 45:6(276) (1990), 25–45
-
On solvable subvarieties of the variety generated by the Witt algebra
Mat. Sb. (N.S.), 136(178):3(7) (1988), 413–425
-
Varieties of polynomial growth of Lie algebras over a field of characteristic zero
Mat. Zametki, 40:6 (1986), 713–721
-
On the Engel problem
Mat. Sb. (N.S.), 124(166):1(5) (1984), 56–67
-
The Engel identity and its application
Mat. Sb. (N.S.), 121(163):3(7) (1983), 423–430
-
Varieties of hypercentral-metabelian Lie algebras over a field of characteristic zero
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1983, no. 5, 33–37
-
Varieties of Lie algebras with weak growth of the sequence of codimensions
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1982, no. 5, 63–66
-
Varieties of centrally metabelian Lie algebras over a field of characteristic zero
Mat. Zametki, 30:5 (1981), 649–657
-
Alexey Yakovlevich Kanel-Belov
Chebyshevskii Sb., 24:4 (2023), 380–400
-
Victor Nikolaevich Latyshev (obituary)
Uspekhi Mat. Nauk, 77:1(463) (2022), 177–182
© , 2026