RUS  ENG
Full version
PEOPLE

Frolov Mikhail Pavlovich

Publications in Math-Net.Ru

  1. Полупроводниковый дисковый лазер на гетероструктуре GaInP/AlGaInP с внутрирезонаторной накачкой в квантовые ямы

    Pis'ma v Zh. Èksper. Teoret. Fiz., 122:4 (2025),  201–207
  2. Pulse 2.77-$\mu$m Cr$^{2+}$:CdSe laser with an output energy of 1.2 J

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 51:2 (2025),  22–25
  3. A powerful laser on a CdSSe crystal with a radiation wavelength of 623.5 nm under longitudinal two-photon pumping

    Kvantovaya Elektronika, 55:2 (2025),  69–75
  4. High-power pulsed, in-well-pumped InGaP/AlGaInP heterostructure, semiconductor disk laser

    Kvantovaya Elektronika, 53:12 (2023),  891–897
  5. Femtosecond Cr2+:ZnSe laser with mode-locking based on carbon nanotubes

    Kvantovaya Elektronika, 53:11 (2023),  867–872
  6. Study of a semiconductor disk laser with a wavelength of 780 nm based on a heterostructure with AlxGa1-xAs/AlyGa1-yAs quantum wells under optical pumping with different radiation wavelengths

    Kvantovaya Elektronika, 53:8 (2023),  636–640
  7. Intensity noise and pulse repetition frequency stability measurements of a passive mode-locked Cr:ZnSe laser

    Optics and Spectroscopy, 130:4 (2022),  564–568
  8. Thermoelectrically cooled, repetitively pulsed Fe : ZnSe laser

    Kvantovaya Elektronika, 49:7 (2019),  641–648
  9. Nanosecond room-temperature Fe : ZnSe laser pumped inside the resonator of a transversely diode-pumped Er : YLF laser

    Kvantovaya Elektronika, 48:8 (2018),  686–690
  10. Efficient operation of a room-temperature Fe2+ : ZnSe laser pumped by a passively Q-switched Er : YAG laser

    Kvantovaya Elektronika, 47:9 (2017),  831–834
  11. Study of the formation of a microrelief on ZnSe- and CdSe-crystal surfaces ablated by excimer KrF-laser radiaton

    Kvantovaya Elektronika, 46:10 (2016),  903–910
  12. Room-temperature Fe2+ : ZnS single crystal laser pumped by an electric-discharge HF laser

    Kvantovaya Elektronika, 46:9 (2016),  769–771
  13. Room-temperature 1.2-J Fe2+:ZnSe laser

    Kvantovaya Elektronika, 46:1 (2016),  11–12
  14. Investigation of Fe:ZnSe laser in pulsed and repetitively pulsed regimes

    Kvantovaya Elektronika, 45:1 (2015),  1–7
  15. Intracavity laser spectroscopy with a semiconductor disk laser-pumped cw Cr2+ : ZnSe laser

    Kvantovaya Elektronika, 43:9 (2013),  885–889
  16. Observation of saturated dispersion resonances of methane in a two-mode Cr2+ : ZnSe/CH4 laser

    Kvantovaya Elektronika, 42:7 (2012),  565–566
  17. Tunable two-mode Cr2+ : ZnSe laser with a frequency-noise spectral density of 0.03 Hz Hz-1/2

    Kvantovaya Elektronika, 42:6 (2012),  509–513
  18. Pulsed Fe2+:ZnS laser continuously tunable in the wavelength range of 3.49 — 4.65 μm

    Kvantovaya Elektronika, 41:1 (2011),  1–3
  19. Continuous-wave Cr2+:CdS laser

    Kvantovaya Elektronika, 40:1 (2010),  7–10
  20. A continuous-wave Fe2+:ZnSe laser

    Kvantovaya Elektronika, 38:12 (2008),  1113–1116
  21. A Cr2+:CdS laser tunable between 2.2 and 3.3 μm

    Kvantovaya Elektronika, 38:9 (2008),  803–804
  22. Efficient pulsed Cr2+:CdSe laser continuously tunable in the spectral range from 2.26 to 3.61 μm

    Kvantovaya Elektronika, 38:3 (2008),  205–208
  23. Intracavity laser spectroscopy by using a Fe2+:ZnSe laser

    Kvantovaya Elektronika, 37:11 (2007),  1071–1075
  24. Efficient cw lasing in a Cr2+:CdSe crystal

    Kvantovaya Elektronika, 37:11 (2007),  991–992
  25. Efficient lasing in a Fe2+:ZnSe crystal at room temperature

    Kvantovaya Elektronika, 36:4 (2006),  299–301
  26. Passive Fe2+:ZnSe single-crystal Q switch for 3-μm lasers

    Kvantovaya Elektronika, 36:1 (2006),  1–2
  27. Laser parameters of a Fe:ZnSe crystal in the 85–255-K temperature range

    Kvantovaya Elektronika, 35:9 (2005),  809–812
  28. Spectral dynamics of intracavity absorption in a pulsed Cr2+:ZnSe laser

    Kvantovaya Elektronika, 35:5 (2005),  425–428
  29. Measurement of the O2 (b1Σg+ → a1Δg) transition probability by the method of intracavity laser spectroscopy

    Kvantovaya Elektronika, 35:4 (2005),  378–384
  30. Efficient IR Fe:ZnSe laser continuously tunable in the spectral range from 3.77 to 4.40 μm

    Kvantovaya Elektronika, 34:10 (2004),  912–914
  31. Pulsed electron-beam-sustained discharge in oxygen-containing gas mixtures: electrical characteristics, spectroscopy,and singlet oxygen yield

    Kvantovaya Elektronika, 34:9 (2004),  865–870
  32. Intracavity laser spectroscopy using a Cr2+ : ZnSe laser

    Kvantovaya Elektronika, 34:2 (2004),  185–188
  33. Efficient lasing of a Cr2+ : ZnSe crystal grown from a vapour phase

    Kvantovaya Elektronika, 33:5 (2003),  408–410
  34. Direct detection of singlet oxygen O2(a1 Δg) by absorption at the a1 Δgb1 Σg+ transition using intracavity laser spectroscopy

    Kvantovaya Elektronika, 31:4 (2001),  363–366
  35. Condensation of the emission spectrum of a wide-band laser in the case of intracavity emission scattering by an aerosol

    Kvantovaya Elektronika, 30:8 (2000),  669–672
  36. Transformation of the diffraction patterns of screens into the diffraction patterns of additional screens in the course of scattering by a gas perturbation or by a particle in a laser beam caustic

    Kvantovaya Elektronika, 29:3 (1999),  265–268
  37. Highly sensitive detection of gaseous impurities by intracavity laser spectroscopy based on a Co:MgF2 laser

    Kvantovaya Elektronika, 28:2 (1999),  186–188
  38. Dynamics of the intracavity absorption in the spectrum of a Co:MgF2 laser emitting for up to 1 ms

    Kvantovaya Elektronika, 26:3 (1999),  223–225
  39. Intracavity laser spectroscopy with a Co:MgF2 laser

    Kvantovaya Elektronika, 25:7 (1998),  670–672
  40. Efficient operation of a Co:MgF2 crystal laser pumped by radiation from a pulsed oxygen – iodine laser

    Kvantovaya Elektronika, 25:4 (1998),  299–300
  41. Efficient laser pumping of a Co:MgF2 crystal by radiation with the wavelength 1.3 μm

    Kvantovaya Elektronika, 24:7 (1997),  606–608
  42. Determination of the concentrations of oxygen and water vapour, and of the temperature of the active medium in a chemical oxygen—iodine laser by intracavity laser spectroscopy

    Kvantovaya Elektronika, 23:7 (1996),  611–614
  43. Direct measurement, by intracavity laser spectroscopy, of the population difference for the bX transition in the NF radical

    Kvantovaya Elektronika, 22:7 (1995),  692–694
  44. Numerical modelling of the process of energy extraction from a mixture of singlet oxygen and iodine in amplification of a short pulse

    Kvantovaya Elektronika, 22:2 (1995),  113–116
  45. Intracavity second harmonic generation in a pulsed oxygen–iodine chemical laser

    Kvantovaya Elektronika, 19:4 (1992),  407–409
  46. Optical excitation of the the B2Σ1/2+X2Σ1/2+ transition in the HgBr radical by consecutive interaction of HgBr2 vapor with the fourth (264 nm) and third harmonics (352 nm) of a neodymium glass laser

    Kvantovaya Elektronika, 18:12 (1991),  1439–1441
  47. Influence of atomic oxygen on the dissociation of molecular iodine and dissipation of the energy stored in the active medium of an oxygen–iodine laser

    Kvantovaya Elektronika, 18:8 (1991),  912–917
  48. Influence of molecular chlorine on the output energy of a pulsed oxygen–iodine chemical laser

    Kvantovaya Elektronika, 18:7 (1991),  840–843
  49. Luminescence of products of a singlet-oxygen generator in the visible and near infrared

    Kvantovaya Elektronika, 18:7 (1991),  832–836
  50. Influence of an iodine donor on the output energy of a pulsed oxygen-iodine laser

    Kvantovaya Elektronika, 18:1 (1991),  33–37
  51. Emission of visible radiation by a chemical oxygen–iodine laser

    Kvantovaya Elektronika, 17:2 (1990),  204–205
  52. Oxygen–iodine laser with a photodissociation source of excited O2(a1Δg) oxygen

    Kvantovaya Elektronika, 16:6 (1989),  1095–1097
  53. Quasi-continuous operation of an IF(B–X) laser involving levels populated as a result of VT relaxation

    Kvantovaya Elektronika, 15:11 (1988),  2337–2340
  54. Optically pumped pulsed IF(B→X) laser utilizing a CF3I–NF2–He mixture

    Kvantovaya Elektronika, 15:5 (1988),  995–1001
  55. Influence of polyatomic gases on the output energy of a photodissociation H2–F2 laser

    Kvantovaya Elektronika, 14:8 (1987),  1563–1567
  56. Investigation of the energetics of a pulsed chemical H2–F2 laser at low partial pressures of hydrogen and fluorine

    Kvantovaya Elektronika, 14:8 (1987),  1558–1562
  57. INFLUENCE OF THE LASER-EMISSION WAVELENGTH ON THE CHANGE IN DISCHARGE TARGET POTENTIAL

    Zhurnal Tekhnicheskoi Fiziki, 56:4 (1986),  780–782
  58. Investigation of the feasibility of generation of short radiation pulses in an atmospheric-pressure chemical H2–F2 laser

    Kvantovaya Elektronika, 13:5 (1986),  1065–1068
  59. Efficiency of initiation of a pulsed H2–F2 laser by photolysis and electron beam methods

    Kvantovaya Elektronika, 10:10 (1983),  2126–2128
  60. Determination of the absolute concentration of fluorine atoms from the absorption of ultraviolet radiation by FO2 radicals

    Kvantovaya Elektronika, 10:8 (1983),  1693–1695
  61. Determination of the degree of photodissociation of F$_2$ from the temperature measured by the method of intracavity laser spectroscopy

    Kvantovaya Elektronika, 10:5 (1983),  1069–1072
  62. Possible investigation of absorption line profiles by intracavity laser spectroscopy

    Kvantovaya Elektronika, 4:5 (1977),  1028–1033
  63. Measurement of the absorption spectrum of atmospheric air in the 5850–5930 Å range by intraresonator laser spectroscopy

    Kvantovaya Elektronika, 2:6 (1975),  1328–1331
  64. High-sensitivity spectroscopy with the aid of dye lasers

    Kvantovaya Elektronika, 1:5 (1974),  1245–1247


© Steklov Math. Inst. of RAS, 2026