RUS  ENG
Full version
PEOPLE

Podmar'kov Yurii Petrovich

Publications in Math-Net.Ru

  1. Efficient operation of a room-temperature Fe2+ : ZnSe laser pumped by a passively Q-switched Er : YAG laser

    Kvantovaya Elektronika, 47:9 (2017),  831–834
  2. Study of the formation of a microrelief on ZnSe- and CdSe-crystal surfaces ablated by excimer KrF-laser radiaton

    Kvantovaya Elektronika, 46:10 (2016),  903–910
  3. Room-temperature Fe2+ : ZnS single crystal laser pumped by an electric-discharge HF laser

    Kvantovaya Elektronika, 46:9 (2016),  769–771
  4. Investigation of Fe:ZnSe laser in pulsed and repetitively pulsed regimes

    Kvantovaya Elektronika, 45:1 (2015),  1–7
  5. Intracavity laser spectroscopy with a semiconductor disk laser-pumped cw Cr2+ : ZnSe laser

    Kvantovaya Elektronika, 43:9 (2013),  885–889
  6. Observation of saturated dispersion resonances of methane in a two-mode Cr2+ : ZnSe/CH4 laser

    Kvantovaya Elektronika, 42:7 (2012),  565–566
  7. Tunable two-mode Cr2+ : ZnSe laser with a frequency-noise spectral density of 0.03 Hz Hz-1/2

    Kvantovaya Elektronika, 42:6 (2012),  509–513
  8. Pulsed Fe2+:ZnS laser continuously tunable in the wavelength range of 3.49 — 4.65 μm

    Kvantovaya Elektronika, 41:1 (2011),  1–3
  9. Continuous-wave Cr2+:CdS laser

    Kvantovaya Elektronika, 40:1 (2010),  7–10
  10. A continuous-wave Fe2+:ZnSe laser

    Kvantovaya Elektronika, 38:12 (2008),  1113–1116
  11. A Cr2+:CdS laser tunable between 2.2 and 3.3 μm

    Kvantovaya Elektronika, 38:9 (2008),  803–804
  12. Efficient pulsed Cr2+:CdSe laser continuously tunable in the spectral range from 2.26 to 3.61 μm

    Kvantovaya Elektronika, 38:3 (2008),  205–208
  13. Intracavity laser spectroscopy by using a Fe2+:ZnSe laser

    Kvantovaya Elektronika, 37:11 (2007),  1071–1075
  14. Efficient cw lasing in a Cr2+:CdSe crystal

    Kvantovaya Elektronika, 37:11 (2007),  991–992
  15. Efficient lasing in a Fe2+:ZnSe crystal at room temperature

    Kvantovaya Elektronika, 36:4 (2006),  299–301
  16. Passive Fe2+:ZnSe single-crystal Q switch for 3-μm lasers

    Kvantovaya Elektronika, 36:1 (2006),  1–2
  17. Laser parameters of a Fe:ZnSe crystal in the 85–255-K temperature range

    Kvantovaya Elektronika, 35:9 (2005),  809–812
  18. Spectral dynamics of intracavity absorption in a pulsed Cr2+:ZnSe laser

    Kvantovaya Elektronika, 35:5 (2005),  425–428
  19. Measurement of the O2 (b1Σg+ → a1Δg) transition probability by the method of intracavity laser spectroscopy

    Kvantovaya Elektronika, 35:4 (2005),  378–384
  20. Efficient IR Fe:ZnSe laser continuously tunable in the spectral range from 3.77 to 4.40 μm

    Kvantovaya Elektronika, 34:10 (2004),  912–914
  21. Pulsed electron-beam-sustained discharge in oxygen-containing gas mixtures: electrical characteristics, spectroscopy,and singlet oxygen yield

    Kvantovaya Elektronika, 34:9 (2004),  865–870
  22. Intracavity laser spectroscopy using a Cr2+ : ZnSe laser

    Kvantovaya Elektronika, 34:2 (2004),  185–188
  23. Efficient lasing of a Cr2+ : ZnSe crystal grown from a vapour phase

    Kvantovaya Elektronika, 33:5 (2003),  408–410
  24. Direct detection of singlet oxygen O2(a1 Δg) by absorption at the a1 Δgb1 Σg+ transition using intracavity laser spectroscopy

    Kvantovaya Elektronika, 31:4 (2001),  363–366
  25. Condensation of the emission spectrum of a wide-band laser in the case of intracavity emission scattering by an aerosol

    Kvantovaya Elektronika, 30:8 (2000),  669–672
  26. Transformation of the diffraction patterns of screens into the diffraction patterns of additional screens in the course of scattering by a gas perturbation or by a particle in a laser beam caustic

    Kvantovaya Elektronika, 29:3 (1999),  265–268
  27. Highly sensitive detection of gaseous impurities by intracavity laser spectroscopy based on a Co:MgF2 laser

    Kvantovaya Elektronika, 28:2 (1999),  186–188
  28. Dynamics of the intracavity absorption in the spectrum of a Co:MgF2 laser emitting for up to 1 ms

    Kvantovaya Elektronika, 26:3 (1999),  223–225
  29. Intracavity laser spectroscopy with a Co:MgF2 laser

    Kvantovaya Elektronika, 25:7 (1998),  670–672
  30. Efficient operation of a Co:MgF2 crystal laser pumped by radiation from a pulsed oxygen – iodine laser

    Kvantovaya Elektronika, 25:4 (1998),  299–300
  31. Efficient laser pumping of a Co:MgF2 crystal by radiation with the wavelength 1.3 μm

    Kvantovaya Elektronika, 24:7 (1997),  606–608
  32. Determination of the concentrations of oxygen and water vapour, and of the temperature of the active medium in a chemical oxygen—iodine laser by intracavity laser spectroscopy

    Kvantovaya Elektronika, 23:7 (1996),  611–614
  33. Direct measurement, by intracavity laser spectroscopy, of the population difference for the bX transition in the NF radical

    Kvantovaya Elektronika, 22:7 (1995),  692–694
  34. Optical excitation of the the B2Σ1/2+X2Σ1/2+ transition in the HgBr radical by consecutive interaction of HgBr2 vapor with the fourth (264 nm) and third harmonics (352 nm) of a neodymium glass laser

    Kvantovaya Elektronika, 18:12 (1991),  1439–1441
  35. Influence of atomic oxygen on the dissociation of molecular iodine and dissipation of the energy stored in the active medium of an oxygen–iodine laser

    Kvantovaya Elektronika, 18:8 (1991),  912–917
  36. Influence of molecular chlorine on the output energy of a pulsed oxygen–iodine chemical laser

    Kvantovaya Elektronika, 18:7 (1991),  840–843
  37. Influence of an iodine donor on the output energy of a pulsed oxygen-iodine laser

    Kvantovaya Elektronika, 18:1 (1991),  33–37
  38. Oxygen–iodine laser with a photodissociation source of excited O2(a1Δg) oxygen

    Kvantovaya Elektronika, 16:6 (1989),  1095–1097
  39. Quasi-continuous operation of an IF(B–X) laser involving levels populated as a result of VT relaxation

    Kvantovaya Elektronika, 15:11 (1988),  2337–2340
  40. Optically pumped pulsed IF(B→X) laser utilizing a CF3I–NF2–He mixture

    Kvantovaya Elektronika, 15:5 (1988),  995–1001
  41. Numerical and experimental investigations of the energy capabilities of a chemical OD(OH)–CO2 laser

    Kvantovaya Elektronika, 13:10 (1986),  1999–2008
  42. High-efficiency photoinitiated chemical D2–F2–CO2 laser

    Kvantovaya Elektronika, 9:3 (1982),  624–625


© Steklov Math. Inst. of RAS, 2026