RUS  ENG
Full version
PEOPLE

Shargatov Vladimir Anatol'evich

Publications in Math-Net.Ru

  1. Linear stability of filtration flow of a gas and two immiscible liquids with interfaces in the context of the Forchheimer law

    TMF, 225:1 (2025),  41–56
  2. Contact boundary instability gas-liquid in porous medium during filtration within the framework of Forchheimer’s law

    Zh. Vychisl. Mat. Mat. Fiz., 65:5 (2025),  827–838
  3. Why stable finite-difference schemes can converge to different solutions: analysis for the generalized hopf equation

    Computation, 12:4 (2024),  76–15
  4. Structures of Classical and Special Discontinuities for the Generalized Korteweg–de Vries–Burgers Equation in the Case of a Flux Function with Four Inflection Points

    Trudy Mat. Inst. Steklova, 322 (2023),  266–281
  5. Global stability of traveling wave solutions of generalized Korteveg–de Vries–Burgers equation with non-constant dissipation parameter

    J. Comput. Appl. Math., 412 (2022),  114354–18
  6. Stability of the aneurysm-type solution in a membrane tube with localized wall thinning filled with a fluid with a non-constant velocity profile

    J. Fluids Struct., 114 (2022),  103712–12
  7. On the Instability of Monotone Traveling-Wave Solutions for a Generalized Korteweg-–de Vries-–Burgers Equation

    Russ. J. Math. Phys., 29 (2022),  342–357
  8. Stability of an aneurysm in a membrane tube filled with an ideal fluid

    TMF, 211:2 (2022),  236–248
  9. Stability analysis of traveling wave solutions of a generalized Korteweg–de Vries–Burgers equation with variable dissipation parameter

    J. Comput. Appl. Math., 397 (2021),  113654–17
  10. Characterization and dynamical stability of fully nonlinear strain solitary waves in a fluid-filled hyperelastic membrane tube

    Acta Mech., 231 (2020),  4095–4110
  11. Stability of finite perturbations of the phase transition interface for one problem of water evaporation in a porous medium

    Appl. Math. Comput., 378 (2020),  152208–17
  12. Traveling waves and undercompressive shocks in solutions of the generalized Korteweg–de Vries–Burgers equation with a time-dependent dissipation coefficient distribution

    Eur. Phys. J. Plus, 135:8 (2020),  1–18
  13. Critical evolution of finite perturbations of a water evaporation surface in porous media

    Izv. Ross. Akad. Nauk Mekh. Zhidk. Gaza, 2020, no. 2,  61–69
  14. On the Structure Stability of a Neutrally Stable Shock Wave in a Gas and on Spontaneous Emission of Perturbations

    Zh. Èksper. Teoret. Fiz., 158:3 (2020),  544–560
  15. Dynamics of Perturbations under Diffusion in a Porous Medium

    Trudy Mat. Inst. Steklova, 310 (2020),  309–321
  16. Study of nonstationary solutions of a generalized Korteweg-de Vries-Burgers equation

    AIP Conf. Proc., 2164 (2019), 50002, 8 pp.
  17. Dynamics of front-like water evaporation phase transition interfaces

    Commun. Nonlinear Sci. Numer. Simul., 67 (2019),  223–236
  18. Analytical description of the structure of special discontinuities described by a generalized KdV–Burgers equation

    Commun. Nonlinear Sci. Numer. Simul., 66 (2019),  129–146
  19. Spontaneously radiating shock waves

    Dokl. Akad. Nauk, 487:1 (2019),  28–31
  20. Stability of shock wave structures in nonlinear elastic media

    Math. Mech. Solids, 24:11 (2019),  3456–3471
  21. Regimes of shock wave propagation through comb-shaped obstacles

    AIP Conf. Proc., 2025 (2018), 80002
  22. Analytical and numerical solutions of the shock tube problem in a channel with a pseudo-perforated wall

    JPCS, 1099 (2018), 12013, 8 pp.
  23. Flow structure behind a shock wave in a channel with periodically arranged obstacles

    Trudy Mat. Inst. Steklova, 300 (2018),  216–228
  24. Unsteady flows in deformable pipes: the energy conservation law

    Trudy Mat. Inst. Steklova, 300 (2018),  76–85
  25. Dynamics and stability of air bubbles in a porous medium

    Zh. Vychisl. Mat. Mat. Fiz., 58:7 (2018),  1219–1234
  26. Problem of arbitrary discontinuity disintegration for the generalized Hopf equation: selection conditions for a unique solution

    J. Appl. Math., 82:3 (2017), 496, 525 pp.
  27. Uniqueness of self-similar solutions to the Riemann problem for the Hopf equation with complex nonlinearity

    Zh. Vychisl. Mat. Mat. Fiz., 56:7 (2016),  1363–1370
  28. Stability of discontinuity structures described by a generalized KdV–Burgers equation

    Zh. Vychisl. Mat. Mat. Fiz., 56:2 (2016),  259–274
  29. Spectral stability of special discontinuities

    Dokl. Akad. Nauk, 462:5 (2015),  512–516
  30. Dynamics and stability of moving fronts of water evaporation in a porous medium

    Int. J. Heat Mass Transfer, 83 (2015),  552–561
  31. Stability of nonstationary solutions of the generalized KdV-Burgers equation

    Zh. Vychisl. Mat. Mat. Fiz., 55:2 (2015),  253–266
  32. Dynamics of water evaporation fronts

    Zh. Vychisl. Mat. Mat. Fiz., 53:9 (2013),  1531–1553
  33. Numerical simulation of changes in the composition of detonation products of a free volume of a combustible mixture

    Fizika Goreniya i Vzryva, 48:3 (2012),  46–52
  34. Numerical modeling of the detonation of a submerged hydrogen-air jet

    Fizika Goreniya i Vzryva, 26:4 (1990),  110–116
  35. Parameters of air shock waves when combustion is transformed into detonation

    Fizika Goreniya i Vzryva, 25:5 (1989),  111–115
  36. Self-similar processes in the propagation of a deflagration in an open volume under the assumption of an equilibrium composition of the combustion products

    Fizika Goreniya i Vzryva, 25:4 (1989),  44–53
  37. Detonation of fuel-air mixtures above the surface of the Earth

    Fizika Goreniya i Vzryva, 24:2 (1988),  124–126
  38. Calculation of the shock wave parameters from the detonation of combustible gas mixtures of variable composition

    Fizika Goreniya i Vzryva, 21:3 (1985),  92–97
  39. Effect of composition of a combustible gas mixture on the parameters of a plane shock wave generated by an explosion in air

    Fizika Goreniya i Vzryva, 20:1 (1984),  90–93
  40. On the calculation of the detonation rate of condensed explosives with solid products

    Dokl. Akad. Nauk SSSR, 261:3 (1981),  592–595


© Steklov Math. Inst. of RAS, 2026