|
|
Publications in Math-Net.Ru
-
On the $L^r$-differentiability of two Lusin-type classes and a full descriptive characterization of the $\mathrm{HK}_r$-integral
Mat. Sb., 216:6 (2025), 46–58
-
Kolmogorov's ideas on the theory of integral in modern research
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2024, no. 1, 20–31
-
On Descriptive Characterizations of an Integral Recovering a Function from Its $L^r$-Derivative
Mat. Zametki, 111:3 (2022), 411–421
-
Reconstruction of a Generalized Fourier Series from Its Sum on a Compact Zero-Dimensional Group in the Non-Abelian Case
Mat. Zametki, 109:4 (2021), 616–624
-
To memory of Elena Aleksandrovna Morozova
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2021, no. 6, 63–70
-
Comparison of Some Trigonometric Integrals
Mat. Zametki, 104:2 (2018), 301–308
-
Integration of Banach-valued functions and Haar series with Banach-valued coefficients
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2017, no. 1, 25–32
-
Integration of Functions Ranging in Complex Riesz Space and Some Applications in Harmonic Analysis
Mat. Zametki, 98:1 (2015), 12–26
-
Generalized Hake property for integrals of Henstock type
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2013, no. 6, 9–13
-
Henstock type integral in compact zero-dimensional metric space and quasi-measures representations
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2012, no. 2, 11–17
-
Integration of Both the Derivatives with Respect to $\mathscr{P}$-Paths and Approximative Derivatives
Mat. Zametki, 85:2 (2009), 283–291
-
Perron type integral on compact zero-dimensional Abelian groups
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2008, no. 3, 37–42
-
Comparison of Two Generalized Trigonometric Integrals
Mat. Zametki, 79:2 (2006), 278–287
-
Comparison of some Henstock-type integrals in the class of functions with values in Riesz spaces
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2006, no. 3, 13–18
-
$\mathcal{P}$-adic Henstock integral in the theory of series with respect to systems of characters of zero-dimensional groups
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2006, no. 1, 25–29
-
Improper Riemann Integral and Henstock Integral in $\mathbb R^n$
Mat. Zametki, 78:2 (2005), 251–258
-
$\mathcal{P}$-adic Henstock integral in the problem of representation of functions by multiplicative transforms
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2005, no. 3, 41–44
-
The Radon-Nikodým derivative for a variational measure constructed from a dyadic basis
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2004, no. 5, 6–12
-
Generalized Henstock integrals in the theory of series in multiplicative
systems
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2004, no. 2, 7–11
-
On a descriptive characterization of the Denjoy–Bochner integral and its generalizations
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2002, no. 3, 57–60
-
On a variational measure defined by an approximate differential basis
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2002, no. 1, 54–57
-
$A$-integrable martingale sequences and Walsh series
Izv. RAN. Ser. Mat., 65:3 (2001), 193–200
-
On the multiple Perron integral
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2000, no. 2, 11–14
-
Martingale sequences in the theory of orthogonal series
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1999, no. 6, 50–53
-
$M$-sets for three classes of series in the Faber–Schauder system
Mat. Zametki, 64:5 (1998), 734–748
-
On the variational measure generated by the indefinite Lebesgue integral
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1998, no. 1, 14–16
-
Approximate symmetric variation and the Lusin $N$-property
Izv. RAN. Ser. Mat., 61:4 (1997), 155–166
-
A generalization of the Denjoy integral
Mat. Zametki, 62:5 (1997), 766–772
-
Variational measure and sufficient differentiability condition of additive interval function
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1997, no. 2, 55–57
-
On the Marcinkiewicz theorem for the binary Perron integral
Mat. Zametki, 59:2 (1996), 267–277
-
Series in multiplicative systems convergent to Denjoy-integrable functions
Mat. Sb., 186:12 (1995), 129–150
-
Some properties of dyadic derivatives
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1993, no. 6, 94–97
-
Uniqueness theorem for representation of functions by multiplicative transformations
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1992, no. 6, 14–18
-
Some uniqueness questions of multiple Haar and trigonometric series
Mat. Zametki, 46:2 (1989), 104–113
-
An analogue of the Névai test for Fourier–Walsh series
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1987, no. 4, 61–63
-
A generalization of a uniqueness theorem for series in multiplicative systems
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1987, no. 3, 11–15
-
Behavior of divergent Haar series
Mat. Zametki, 36:4 (1984), 509–515
-
The Gibbs phenomenon for the Walsh system
Dokl. Akad. Nauk SSSR, 268:5 (1983), 1033–1034
-
Certain properties of the Haar double series with everywhere convergent spherical partial sums
Mat. Zametki, 33:1 (1983), 89–95
-
Gibbs constants for partial sums of Fourier–Walsh series and their $(C,1)$-means
Trudy Mat. Inst. Steklov., 164 (1983), 37–48
-
Constructive variant of the definition of an HD-integral
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1982, no. 6, 41–45
-
An example of a $U$-set for the Walsh system
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1982, no. 5, 53–55
-
On Cesaro means of Fourier series with respect to multiplicative systems
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1982, no. 1, 7–11
-
Certain estimates of approximation of functions by Cesàro means of Walsh–Fourier series
Mat. Zametki, 29:4 (1981), 539–547
-
Example of a Walsh series
Mat. Zametki, 28:5 (1980), 737–748
-
Example of a double Haar series
Mat. Zametki, 28:3 (1980), 343–353
-
Walsh series, convergent with respect to subsequences of partial sums
Mat. Zametki, 28:1 (1980), 45–52
-
On the rate of approach to zero of the coefficients of null series in the Haar and Walsh systems
Izv. Akad. Nauk SSSR Ser. Mat., 41:3 (1977), 703–716
-
The $h$-measure of $M$-sets for a Walsh system
Mat. Zametki, 21:3 (1977), 335–340
-
On the uniqueness condition for the representation of functions by Walsh series
Mat. Zametki, 21:2 (1977), 187–197
-
An example of a zero series expansion in the Walsh system
Mat. Zametki, 19:2 (1976), 179–186
-
Example of a Walsh series with a subsequence of partial sums converging everywhere to zero
Mat. Sb. (N.S.), 97(139):4(8) (1975), 517–539
-
On the uniqueness of a Walsh series converging on subsequences of partial sum
Mat. Zametki, 16:1 (1974), 27–32
-
Uniqueness sets for multiple Haar series
Mat. Zametki, 14:6 (1973), 789–798
-
Some generalizations of uniqueness theorems for series in Walsh systems
Mat. Zametki, 13:3 (1973), 367–372
-
Generalized integrals and Fourier series
Itogi Nauki. Ser. Matematika. Mat. Anal. 1970, 1971, 65–107
-
Theorems concerning the uniqueness of Haar series for summation methods
Mat. Zametki, 9:4 (1971), 449–458
-
Haar series with convergent subsequences of partial sums
Dokl. Akad. Nauk SSSR, 183:4 (1968), 784–786
-
On the uniqueness of a Haar series that converges with respect to subsequences of partial sums
Mat. Zametki, 4:6 (1968), 707–714
-
Differentiation with respect to nets and the Haar series
Mat. Zametki, 4:1 (1968), 33–40
-
Calculation of the coefficients of an everywhere convergent Haar series
Mat. Sb. (N.S.), 75(117):3 (1968), 349–360
-
Interconnection between Taylor's $AP$-integral and James' $P^2$-integral
Mat. Sb. (N.S.), 70(112):3 (1966), 380–393
-
On integrating the exact Schwarzian derivative
Mat. Sb. (N.S.), 63(105):3 (1964), 329–340
-
Some properties of the $CP$-integral
Mat. Sb. (N.S.), 60(102):3 (1963), 304–324
-
Interrelation between general Denjoy integrals and totalization $(T_{2S})_0$
Mat. Sb. (N.S.), 52(94):1 (1960), 551–578
-
Mikhail Konstantinovich Potapov (on his 90th birthday)
Uspekhi Mat. Nauk, 76:2(458) (2021), 185–186
-
Taras Pavlovich Lukashenko (to 70th anniversary)
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2019, no. 2, 70–71
-
On the 70th anniversary of Luzin function theory seminar
Uspekhi Mat. Nauk, 40:3(243) (1985), 219–225
-
Dmitrii Evgen'evich Men'shov (on his ninetieth birthday)
Uspekhi Mat. Nauk, 37:5(227) (1982), 209–219
© , 2026