RUS  ENG
Full version
PEOPLE

Skvortsov Valentin Anatol'evich

Publications in Math-Net.Ru

  1. On the $L^r$-differentiability of two Lusin-type classes and a full descriptive characterization of the $\mathrm{HK}_r$-integral

    Mat. Sb., 216:6 (2025),  46–58
  2. Kolmogorov's ideas on the theory of integral in modern research

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2024, no. 1,  20–31
  3. On Descriptive Characterizations of an Integral Recovering a Function from Its $L^r$-Derivative

    Mat. Zametki, 111:3 (2022),  411–421
  4. Reconstruction of a Generalized Fourier Series from Its Sum on a Compact Zero-Dimensional Group in the Non-Abelian Case

    Mat. Zametki, 109:4 (2021),  616–624
  5. To memory of Elena Aleksandrovna Morozova

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2021, no. 6,  63–70
  6. Comparison of Some Trigonometric Integrals

    Mat. Zametki, 104:2 (2018),  301–308
  7. Integration of Banach-valued functions and Haar series with Banach-valued coefficients

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2017, no. 1,  25–32
  8. Integration of Functions Ranging in Complex Riesz Space and Some Applications in Harmonic Analysis

    Mat. Zametki, 98:1 (2015),  12–26
  9. Generalized Hake property for integrals of Henstock type

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2013, no. 6,  9–13
  10. Henstock type integral in compact zero-dimensional metric space and quasi-measures representations

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2012, no. 2,  11–17
  11. Integration of Both the Derivatives with Respect to $\mathscr{P}$-Paths and Approximative Derivatives

    Mat. Zametki, 85:2 (2009),  283–291
  12. Perron type integral on compact zero-dimensional Abelian groups

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2008, no. 3,  37–42
  13. Comparison of Two Generalized Trigonometric Integrals

    Mat. Zametki, 79:2 (2006),  278–287
  14. Comparison of some Henstock-type integrals in the class of functions with values in Riesz spaces

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2006, no. 3,  13–18
  15. $\mathcal{P}$-adic Henstock integral in the theory of series with respect to systems of characters of zero-dimensional groups

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2006, no. 1,  25–29
  16. Improper Riemann Integral and Henstock Integral in $\mathbb R^n$

    Mat. Zametki, 78:2 (2005),  251–258
  17. $\mathcal{P}$-adic Henstock integral in the problem of representation of functions by multiplicative transforms

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2005, no. 3,  41–44
  18. The Radon-Nikodým derivative for a variational measure constructed from a dyadic basis

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2004, no. 5,  6–12
  19. Generalized Henstock integrals in the theory of series in multiplicative systems

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2004, no. 2,  7–11
  20. On a descriptive characterization of the Denjoy–Bochner integral and its generalizations

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2002, no. 3,  57–60
  21. On a variational measure defined by an approximate differential basis

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2002, no. 1,  54–57
  22. $A$-integrable martingale sequences and Walsh series

    Izv. RAN. Ser. Mat., 65:3 (2001),  193–200
  23. On the multiple Perron integral

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2000, no. 2,  11–14
  24. Martingale sequences in the theory of orthogonal series

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1999, no. 6,  50–53
  25. $M$-sets for three classes of series in the Faber–Schauder system

    Mat. Zametki, 64:5 (1998),  734–748
  26. On the variational measure generated by the indefinite Lebesgue integral

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1998, no. 1,  14–16
  27. Approximate symmetric variation and the Lusin $N$-property

    Izv. RAN. Ser. Mat., 61:4 (1997),  155–166
  28. A generalization of the Denjoy integral

    Mat. Zametki, 62:5 (1997),  766–772
  29. Variational measure and sufficient differentiability condition of additive interval function

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1997, no. 2,  55–57
  30. On the Marcinkiewicz theorem for the binary Perron integral

    Mat. Zametki, 59:2 (1996),  267–277
  31. Series in multiplicative systems convergent to Denjoy-integrable functions

    Mat. Sb., 186:12 (1995),  129–150
  32. Some properties of dyadic derivatives

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1993, no. 6,  94–97
  33. Uniqueness theorem for representation of functions by multiplicative transformations

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1992, no. 6,  14–18
  34. Some uniqueness questions of multiple Haar and trigonometric series

    Mat. Zametki, 46:2 (1989),  104–113
  35. An analogue of the Névai test for Fourier–Walsh series

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1987, no. 4,  61–63
  36. A generalization of a uniqueness theorem for series in multiplicative systems

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1987, no. 3,  11–15
  37. Behavior of divergent Haar series

    Mat. Zametki, 36:4 (1984),  509–515
  38. The Gibbs phenomenon for the Walsh system

    Dokl. Akad. Nauk SSSR, 268:5 (1983),  1033–1034
  39. Certain properties of the Haar double series with everywhere convergent spherical partial sums

    Mat. Zametki, 33:1 (1983),  89–95
  40. Gibbs constants for partial sums of Fourier–Walsh series and their $(C,1)$-means

    Trudy Mat. Inst. Steklov., 164 (1983),  37–48
  41. Constructive variant of the definition of an HD-integral

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1982, no. 6,  41–45
  42. An example of a $U$-set for the Walsh system

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1982, no. 5,  53–55
  43. On Cesaro means of Fourier series with respect to multiplicative systems

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1982, no. 1,  7–11
  44. Certain estimates of approximation of functions by Cesàro means of Walsh–Fourier series

    Mat. Zametki, 29:4 (1981),  539–547
  45. Example of a Walsh series

    Mat. Zametki, 28:5 (1980),  737–748
  46. Example of a double Haar series

    Mat. Zametki, 28:3 (1980),  343–353
  47. Walsh series, convergent with respect to subsequences of partial sums

    Mat. Zametki, 28:1 (1980),  45–52
  48. On the rate of approach to zero of the coefficients of null series in the Haar and Walsh systems

    Izv. Akad. Nauk SSSR Ser. Mat., 41:3 (1977),  703–716
  49. The $h$-measure of $M$-sets for a Walsh system

    Mat. Zametki, 21:3 (1977),  335–340
  50. On the uniqueness condition for the representation of functions by Walsh series

    Mat. Zametki, 21:2 (1977),  187–197
  51. An example of a zero series expansion in the Walsh system

    Mat. Zametki, 19:2 (1976),  179–186
  52. Example of a Walsh series with a subsequence of partial sums converging everywhere to zero

    Mat. Sb. (N.S.), 97(139):4(8) (1975),  517–539
  53. On the uniqueness of a Walsh series converging on subsequences of partial sum

    Mat. Zametki, 16:1 (1974),  27–32
  54. Uniqueness sets for multiple Haar series

    Mat. Zametki, 14:6 (1973),  789–798
  55. Some generalizations of uniqueness theorems for series in Walsh systems

    Mat. Zametki, 13:3 (1973),  367–372
  56. Generalized integrals and Fourier series

    Itogi Nauki. Ser. Matematika. Mat. Anal. 1970, 1971,  65–107
  57. Theorems concerning the uniqueness of Haar series for summation methods

    Mat. Zametki, 9:4 (1971),  449–458
  58. Haar series with convergent subsequences of partial sums

    Dokl. Akad. Nauk SSSR, 183:4 (1968),  784–786
  59. On the uniqueness of a Haar series that converges with respect to subsequences of partial sums

    Mat. Zametki, 4:6 (1968),  707–714
  60. Differentiation with respect to nets and the Haar series

    Mat. Zametki, 4:1 (1968),  33–40
  61. Calculation of the coefficients of an everywhere convergent Haar series

    Mat. Sb. (N.S.), 75(117):3 (1968),  349–360
  62. Interconnection between Taylor's $AP$-integral and James' $P^2$-integral

    Mat. Sb. (N.S.), 70(112):3 (1966),  380–393
  63. On integrating the exact Schwarzian derivative

    Mat. Sb. (N.S.), 63(105):3 (1964),  329–340
  64. Some properties of the $CP$-integral

    Mat. Sb. (N.S.), 60(102):3 (1963),  304–324
  65. Interrelation between general Denjoy integrals and totalization $(T_{2S})_0$

    Mat. Sb. (N.S.), 52(94):1 (1960),  551–578

  66. Mikhail Konstantinovich Potapov (on his 90th birthday)

    Uspekhi Mat. Nauk, 76:2(458) (2021),  185–186
  67. Taras Pavlovich Lukashenko (to 70th anniversary)

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2019, no. 2,  70–71
  68. On the 70th anniversary of Luzin function theory seminar

    Uspekhi Mat. Nauk, 40:3(243) (1985),  219–225
  69. Dmitrii Evgen'evich Men'shov (on his ninetieth birthday)

    Uspekhi Mat. Nauk, 37:5(227) (1982),  209–219


© Steklov Math. Inst. of RAS, 2026